The Beam Energy Scan (BES) program at the Relativistic Heavy Ion Collider (RHIC) was extended to energies below $\sqrt{\textit{s}_{NN}}$ = 7.7 GeV in 2015 by successful implementation of the fixed-target mode of operation in the STAR (Solenoidal Track At RHIC) experiment. In the fixed-target mode, ions circulate in one ring of the collider and interact with a stationary target at the entrance of the STAR Time Projection Chamber. The first results for Au+Au collisions at $\sqrt{\textit{s}_{NN}}$ = 4.5 GeV are presented, including directed and elliptic flow of identified hadrons, and radii from pion femtoscopy. The proton flow and pion femtoscopy results agree quantitatively with earlier measurements by Alternating Gradient Synchrotron experiments at similar energies. This validates running the STAR experiment in the fixed-target configuration. Pion directed and elliptic flow are presented for the first time at this beam energy. Pion and proton elliptic flow show behavior which hints at constituent quark scaling, but large error bars preclude reliable conclusions. The ongoing second phase of BES (BES-II) will provide fixed-target data sets with 100 times more events at each of several energies down to $\sqrt{\textit{s}_{NN}}$ = 3.0 GeV.
Centrality selection for STAR FXT sqrt(sNN) = 4.5 GeV Au+Au collisions
Rapidity dependence of directed flow, v1(y), for protons with transverse momentum 0.4 < pT < 2.0 GeV/c from events with 10-25% centrality.
Rapidity dependence of directed flow, v1(y), for negative pions with transverse momentum pT > 0.2 GeV/c and total momentum magnitude |p| < 1.6 GeV/c from events within 10-30% centrality. Here, the BBC-based Event Plane method is used. Plotted error bars are statistical only, and systematic errors are of comparable size.
We present results on transverse momentum ($p_{\rm T}$) and rapidity ($y$) differential production cross sections, mean transverse momentum and mean transverse momentum square of inclusive J/$\psi$ and $\psi(2S)$ at forward rapidity ($2.5
Differential production cross sections of $J/\psi$ as a function of $p_{\rm T}$.
Differential production cross sections of $J/\psi$ as a function of rapidity.
Differential production cross sections of $\psi(2S)$ as a function of $p_{\rm T}$.
The ALICE Collaboration has measured inclusive J/psi production in pp collisions at a center of mass energy sqrt(s)=2.76 TeV at the LHC. The results presented in this Letter refer to the rapidity ranges |y|<0.9 and 2.5
Double differential J/$\psi$ production cross section at $\sqrt{s}=2.76$ TeV. The first uncertainty is statistical, the second one is $p_{\rm T}$-coorelated, the third one is uncorrelated. Polarization-related uncertainties are not included.
The $\sqrt{s}$-dependence of $\langle p_{\rm T}\rangle$ for inclusive J/$\psi$ production (forward rapidity).
the $\sqrt{s}$-dependence of $\langle p_{\rm T}\rangle$ for inclusive J/$\psi$ production (forward rapidity).
The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.
Projections of the correlation function C.
Projections of the correlation function C.
Projections of the correlation function C.
Short overview of experiments with SND detector at VEPP-2M e^+e^- collider in the energy range 2E = 400 - 1400 MeV and preliminary results of data analysis are presented.
No description provided.
No description provided.
No description provided.
The cross sections of neutrino and antineutrino quasielastic reactions\(vn \to \mu ^ -p,\bar vp \to \mu ^ +n,\bar vp \to \mu ^ +\Lambda\) were studied in the neutrino energy range between 3 and 30 GeV. In comparison withV-A theory axial mass parameters ofMA=(1.06±0.05±0.14) GeV/c2 from neutrino andMA=(0.71±0.10±0.20) GeV/c2 from antineutrino data were found. The total cross-section for the hyperon production process can be described byMA=1.0 GeV/c2.
Measured Quasi-Elastic total cross section.
None
No description provided.
No description provided.
None
No description provided.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.