The reactionsπ−p→K0(890) Λ,K0(890)Σ0 andK0(890)Σ0 are studied at an incident momentum of 3.95 GeV/c using data from a high statistics bubble chamber experiment corresponding to ∼90 events/μb. The differential cross sections, density matrix elements of the vector meson and hyperon polarizations are presented. A transversity amplitude analysis is performed for each of the reactions. The results are compared with those obtained for the SU(3) related processesK−p→ϕΔ, ϕΣ0, ϕΣ0(1385) andϱ−Σ+(1385) and with predictions of the additive quark model and SU(6) sum rules.
BREIT-WIGNER FIT WITH BACKGROUND POLYNOMIAL.
BACKWARD CROSS SECTION.
TOTAL CROSS SECTION USING SLICING TECHNIQUE. FORWARD (-TP < 1.2 GEV**2) CROSS SECTION IS 25 +- 2 MUB: DOUBLE MASS CUT GIVES 20 +- 7 PCT BACKGROUND CONTAMINATION.
We present results for the reactions K 0 p →Λπ + and K 0 p →∑ 0 π + , for |u'| <0. 05 ( GeV /c) 2 and kaon momenta between 1 and 8 GeV/ c . The experiment was performed ina neutral beam at the PS with a two arm spark chamber spectrometer. The cross sections show strong dependence on beam energy and momentum transfer u ′. Λ polarization is compatible with zero. We compare energy dependence of the backward cross sections with the baryon exchange model from π N scattering.
No description provided.
No description provided.
No description provided.
The reactions p¯p→V0+neutrals were studied in a multiparticle spectrometer at 3.0 GeV/c incident momentum, with a sensitivity of about 150 events/μb. Differential cross sections and polarization of the Λ¯ for the final states Λ¯(Λ) and Λ¯(Σ0) are reported and compared with theoretical models. Differential cross sections of the K0 in K0[K*(890)] and the Λ in Λ(Λ¯+Σ¯0) are also measured. Upper limits of a few μb MeV are obtained for the formation of narrow resonances decaying into V0+neutrals in the mass interval 2.74-2.80 GeV/c2.
FORWARD HEMISPHERE TOTAL CROSS SECTIONS NOT INCLUDING CHARGE CONJUGATE REACTIONS. CORRECTED FOR DECAY BRANCHING RATIOS AND FOR BACKGROUNDS.
No description provided.
No description provided.
Differential cross sections and polarizations have been measured for the backward peaks in the reactions π − p →Λ K 0 and π − p →Λ K ∗ (890) at 8 GeV/c. The experiment was performed with a liquid hydrogen target at the ω spectrometer. The cross sections for u′>−2 ( GeV /c) 2 are 0.27 ± 0.03 μ b for π − p →Λ+ K 0 and 0.55±0.07 μ b for π − p →Λ K ∗0 . Large positive Λ polarization was observed in both reactions for u ′>−0.5 (GeV/ c ) 2 . The dominant production mechanism was found to be unnatural baryon exchange.
Axis error includes +- 0.0/0.0 contribution (?////).
Axis error includes +- 0.0/0.0 contribution (?////).
No description provided.
We have measured the differential cross sections and Λ polarizations in the reactions π−p→ΛK0 and π−p→ΛK*0 (890) near the backward direction, at 3, 4, 5, and 6 GeV/c. Data equal to several times the world's total sample above 2 GeV/c were recorded. Both reactions are characterized by cross sections falling rapidly with beam momentum, and by large positive Λ polarizations for u′ between 0.0 and 0.6 GeV2. Analysis of π−p→ΛK0 yields an effective Regge trajectory consistent with antishrinkage of the backward peak. Separation into amplitudes of definite-parity-naturality exchange shows the reaction to be dominated by unnatural-parity exchange. The energy behavior of this exchange is, however, not consistent with a single linear baryon Regge trajectory or exchange-degenerate pair of trajectories. An apparent normalization discrepancy between data on π−p→ΛK0 of a CERN-ETH group and other high-statistics data including that of this experiment is discussed.
No description provided.
No description provided.
No description provided.
From an experiment done with the CERN Omega spectrometer, triggered by a fast forward proton device, we present results on the differential cross section d σ d u for π − p backward elastic scattering. The d σ d u distribution agrees with an A e Bu law. The compilation of existing results shows a discrepancy between results but the ( d σ d u ) u=0 data fit perfectly an s 2 α 0 −2 dependence, as predicted by a single Δδ Regge trajectory exchange. A search for the reaction π − p → d p , with a fast forward deuteron, which can be produced by a double-baryon exchange mechanism, gives cross-section upper limits of ∼1% of the backward elastic cross section.
UMIN IS 0.0446 GEV**2.
UMIN IS 0.0333 GEV**2.
D(SIG)/DU FITTED FOR 0 < -U < 0.75 GEV**2 TO GIVE SLOPE/INTERCEPT.
The annihilation\(\bar pn\) → π−π0 has been studied in a D2 bubble chamber at several beam momenta between 1.0 and 1.6 GeV/c. The cross-section has been measured to be (110±15) μb at an average beam momentum of 1.3 GeV/c. The study of the angular distribution shows the presence of anL = 3 wave.
NO CORRECTIONS APPLIED FOR SPECTATOR PROTON MOMENTUM CUT NOR FOR ANY RESCATTERING IN DEUTERIUM NUCLEI.
No description provided.
DIP AT -U = 0.4 TO 0.6 (REFLECTING DIP NEAR COS(THETA) = -0.8).
The backward elastic scattering reaction π − p → p π − at momenta 25 and 38 GeV/ c have been measured using a magnetic spectrometer with hybrid chambers. The experimental data on the dependence of the cross section d σ /d u on the momentum transfer u as well as the energy dependence d σ /d u at u = 0 are given.
.
.
The differential cross section of π+p elastic scattering has been measured in two high-statistics bubble-chamber exposures at laboratory beam momenta of 3.7 and 7.1 GeV/c. A new feature suggested by these data is a dip in dσdu at −u≃3 GeV2. This dip corresponds well to the third zero of J0(b−u′), where ℏcb=1 fm. The effective u-channel Regge trajectory computed for these two energies has a slope of 0.22 ± 0.26.
No description provided.
We have investigated the ρ-meson production mechanism in the three reactions π±p→ρ±p and π−p→ρ0n at 3.9 GeV/c (s=8.2 GeV2) using the prism-plot technique. Differential cross sections at all momentum transfers are presented. A significant backward peak has been found in all three reactions. The differential cross sections for these backward peaks are given and are compared with the equivalent pion elastic and charge-exchange cross sections in the backward direction. Using a linear combination of the three differential cross sections we have isolated the I=0 exchange contribution in the forward direction. This differential cross section has a zero at −t=0.45 (GeV/c)2 and is fitted by the dual absorptive model of Harari with an interaction radius of ∼ 1.2 F. The total I=0 cross section is calculated and compared with similarly determined cross sections at higher momenta. An analysis of the properties of the other possible spin-parity exchanges is also presented.
SLOPE FITTED OVER 0.05 < -T < 0.3 GEV**2.
No description provided.
No description provided.