Date

Neutron proton elastic scattering spin spin correlation parameter measurements between 500-MeV and 800-Mev: 1. C(SL) and C(LL) at backward c.m. angles

Ditzler, W.R. ; Hill, D. ; Hoftiezer, J. ; et al.
Phys.Rev.D 46 (1992) 2792-2830, 1992.
Inspire Record 334079 DOI 10.17182/hepdata.22741

Final results are presented for the spin-spin correlation parameters CSL and CLL for np elastic scattering with a polarized neutron beam incident on a polarized proton target. The beam kinetic energies are 484, 634, and 788 MeV, and the c.m. angular range is 80°-180°. These data will contribute significantly to the determination of the isospin-0 amplitudes in the energy range from 500 to 800 MeV.

6 data tables

Pure np elastic scattering spin variables. CLL and CSL derived from measured combined spin variable. Thus the errors on CLL and CSL are slightly correlated. There are also additional systematic errors of 7 pct associated with beam and 3.3 pct target polarizations respectively.

Pure np elastic scattering spin variables. CLL and CSL derived from measured combined spin variable. Thus the errors on CLL and CSL are slightly correlated. There are also additional systematic errors of 7 pct associated with beam and 3.3 pct target polarizations respectively.

Pure np elastic scattering spin variables. CLL and CSL derived from measured combined spin variable. Thus the errors on CLL and CSL are slightly correlated. There are also additional systematic errors of 7 pct associated with beam and 3.3 pct target polarizations respectively.

More…

Study of charm photoproduction mechanisms

The NA14/2 collaboration Alvarez, M.P. ; Barate, R. ; Bloch, D. ; et al.
Z.Phys.C 60 (1993) 53-62, 1993.
Inspire Record 333271 DOI 10.17182/hepdata.14331

This paper presents results on charm photoproduction in the energy interval 40 to 160 GeV, obtained from the high-statistics charm samples of the NA 14/2 experiment at CERN. We measure the charm cross-section, the distributions inxF andp2T and various production ratios and charge asymmetries. The total non-diffractive open-charm cross-section per nucleon is measured to be\(\sigma _{(\gamma N \to c\bar cX)} \) at 〈Eγ〉 =100 GeV. We discuss the photoproduction of charm in terms of theoretical and phenomenological models. We compare the measuredp2T andxF distributions with first-order QCD calculations of photon-gluon fusion and obtain a value for the charm-quark mass ofmc=1.5+0.2−0.1GeV/c2.

10 data tables

D0 cross section assuming branching ratio of D0 --> K- PI+ of 3.65 +- 0.21 PCT.

D+(-) cross section assuming branching ratio of D+ --> K- PI+ PI+ of 8.0 +0.8,-0.7 PCT.

Total non diffractive open charm production cross section allowing for contributions for other charmed particles (D/S and LAMBDA/C). Comparison of data with first order QCD leads to a predicted charm quark mass of 1.5 +0.2,-0.1 GeV.

More…

Measurement of alpha-s in hadronic Z decays using all orders resummed predictions

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 284 (1992) 163-176, 1992.
Inspire Record 333334 DOI 10.17182/hepdata.48421

None

1 data table

Three different methods are used for extraction Alphas value (see text for details). Systematical errors with C=HADR and C=THEOR are due to hadronization correction and theoretical uncertainties.


Evidence for the triple gluon vertex from measurements of the QCD color factors in Z decay into four jets

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 284 (1992) 151-162, 1992.
Inspire Record 333127 DOI 10.17182/hepdata.48505

None

1 data table

NC, CF, and TF are the color factors for SU(N) group. For SU(3) they are equal to: NC = 3, CF = 4/3, and TF = 1/2.


Evidence for b flavored baryon production in Z0 decays at LEP

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 281 (1992) 394-404, 1992.
Inspire Record 333300 DOI 10.17182/hepdata.48511

We observe evidence for the production of b-flavoured baryons in decays of the Z 0 boson with the OPAL detector at LEP. We find 68 Λl − , Λ l + candidates in 458 583 hadronic Z 0 decays. We interpret this as a signal of 55 ± 9 +0.3 −3.1 events from the semi-leptonic decays of b baryons. Assuming weakly decaying b baryons produced in Z 0 decays are mostly Λ b particles, we measure the product branching ratio (Γ b b /Γ had ) f ( b →Λ b ) B (Λ b →Λl − v X ) , averaged over the electron and muon channels, to be (6.2±1.0±1.5)×10 −4 .

1 data table

FD is considered as a quark fragmentation fraction. Charge conjugated state is understood.


An Improved measurement of alpha-s (M (Z0)) using energy correlations with the OPAL detector at LEP

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 276 (1992) 547-564, 1992.
Inspire Record 321657 DOI 10.17182/hepdata.29245

We report on an improved measurement of the value of the strong coupling constant σ s at the Z 0 peak, using the asymmetry of the energy-energy correlation function. The analysis, based on second-order perturbation theory and a data sample of about 145000 multihadronic Z 0 decays, yields α s ( M z 0 = 0.118±0.001(stat.)±0.003(exp.syst.) −0.004 +0.0009 (theor. syst.), where the theoretical systematic error accounts for uncertainties due to hadronization, the choice of the renormalization scale and unknown higher-order terms. We adjust the parameters of a second-order matrix element Monte Carlo followed by string hadronization to best describe the energy correlation and other hadronic Z 0 decay data. The α s result obtained from this second-order Monte Carlo is found to be unreliable if values of the renormalization scale smaller than about 0.15 E cm are used in the generator.

2 data tables

Value of LAMBDA(MSBAR) and ALPHA_S.. The first systematic error is experimental, the second is from theory.

The EEC and its asymmetry at the hadron level, unfolded for initial-state radiation and for detector acceptance and resolution. Errors include full statistical and systematic uncertainties.


A Direct determination of the number of light neutrino families from e+ e- ---> neutrino anti-neutrino gamma at LEP

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 275 (1992) 209-221, 1992.
Inspire Record 324176 DOI 10.17182/hepdata.29260

The L3 detector at LEP has been used to determine the number of light neutrino families by measuring the cross section of single photon even in e + e − collisions at energies near the Z 0 resonance. We have observed 61 single photon candidates with more than 1.5 GeV of deposited energy in the barrel electromagnetic calorimeter, for a total integrated luminosity of 3.0 pb −1 . From a likelihood fir to the single photon cross sections, we determin N ν =3.24 ± 0.46 ( statistical ) ±0.22 ( systematic ).

1 data table

Corrected single photon cross sections. Errors represent 68 pct CL intervals and take into account the background fluctuations.


Measurement of the charged particle multiplicity distribution in hadronic Z decays

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 273 (1991) 181-192, 1991.
Inspire Record 319520 DOI 10.17182/hepdata.29273

The charged particle multiplicity distribution of hadronic Z decays was measured on the peak of the Z resonance using the ALEPH detector at LEP. Using a model independent unfolding procedure the distribution was found to have a mean 〈 n 〉=20.85±0.24 and a dispersion D =6.34±0.12. Comparison with lower energy data supports the KNO scaling hypothesis in the energy range s =29−91.25 GeV. At s =91.25 GeV the shape of the multiplicity distribution is well described by a log-normal distribution, as predicted from a cascading model for multi-particle production. The same model also successfully describes the energy dependence of the mean and width of the multiplicity distribution. A next-to-leading order QCD prediction in the framework of the modified leading-log approximation and local parton-hadron duality is found to fit the energy dependence of the mean but not the width of the charged multiplicity distribution, indicating that the width of the multiplicity distribution is a sensitive probe for higher order QCD or non-perturbative effects.

2 data tables

Unfolded charged particle multiplicity distribution. The entry for N=2 is from the LUND 7.2 parton shower model.

Leading moments of the charged particle multiplicity. R2 is the second binomial moment given by MEAN(MULT(MULT-1))/(MEAN(MULT))**2.


A Measurement of photon radiation in lepton pair events from Z0 decays

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 273 (1991) 338-354, 1991.
Inspire Record 319674 DOI 10.17182/hepdata.48520

We have measured the photon yield in lepton pair events recorded by the OPAL detector in a data sample corresponding to an integrated luminosity of 7.1 pb −1 at centre-of-mass energies between 88 GeV and 94 GeV. The results are compared to QED expectations for initial and final state photon radiation. No anomalous photon yield has been found, and stringent limits on the branching ratio for exotic radiative three body Z 0 decays into a photon and a pair of leptons are obtained. We also place limits on possible Z 0 decays into a photon and a resonance X with subsequent decays of X into a pair of leptons. Acollinear μ + μ − events with missing momentum along the beam direction are identified as events with hard initial state photon radiation and used to measure an average cross section of 15 ± 8 6 pb for e + e − annihilation into μ + μ − , in the so far untested range of centre-of-mass energies between 60 GeV and 84 GeV. This value is consistent with a cross section of 24 pb, expected from Z 0 and photon exchange.

1 data table

No description provided.


Measurement of the strong coupling constant alpha-s for bottom quarks at the Z0 resonance

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 271 (1991) 461-467, 1991.
Inspire Record 318981 DOI 10.17182/hepdata.38288

We have measured the ratio of the strong coupling constants α s for bottom quarks and light quarks at the Z 0 resonance, in order to test the flavour independence of the strong interaction. The coupling strength α s has been determined from the fraction of events with three jets, measured for a sample of all hardronic events, and for inclusive muon and electron events. The b purity is evaluated to be 22% for the first data set and 87% for the inclusive lepton sample. We find α s ( b ) α s ( udsc ) =1.00± 0.05 ( stat. )±0.06 ( syst. ) .

1 data table

No description provided.