The p p and p n elastic differential cross sections have been extracted from the reaction p d→ p pn in which the deuteron breaks up. The incident antiproton momenta were 0.480, 0.735 and 0.940 GeV/ c , and the range of the momentum transfers was 0.04 < ∣ t ∣ < 0.7 (GeV/ c ) 2 . Both p p and p n differential cross sections are diffraction-like, with structure similar to the higher-momentum data.
No description provided.
No description provided.
No description provided.
The polarization of recoiling protons from the photoproduction of π0 mesons on liquid hydrogen has been measured for primary photon energies between 500 and 1000 MeV over a range of π0 c.m. angles from 55° to 130°. The results show structure not observed previously in experiments of less precision. In particular, the polarization at 90° c.m. is close to zero at a primary photon energy of 900 MeV. Also, a strong dependence of polarization on π0 c.m. angle between 600 and 900 MeV was observed. A subsidiary measurement of the polarization of the recoil protons from elastic e−p scattering at 900 MeV and q2=10 F−2 gave a value (1.3±2.0)%.
No description provided.
No description provided.
No description provided.
The Λ polarization and the differential cross section for the reaction γ+p→K++Λ have been measured, using the Caltech synchrotron, at 90° in the c.m. system and at laboratory photon energies of 1100, 1200, and 1300 MeV. Protons from the asymmetric decay of the Λ were detected by counters placed above and below the production plane. Kaons were identified by their behavior in a thick range telescope. Polarization results were PΛ=+0.34±0.09 at 1100 MeV, +0.30±0.07 at 1200 MeV, and +0.08±0.07 at 1300 MeV, where PΛ was measured in the p^γ×p^Λ direction. The differential cross section was constant with energy at 0.14±0.01 μb/sr. Although the apparent bump in the polarization at 90° at a total energy of ≈1700 MeV adds support to models which invoke a resonance here, no really new conclusions can be reached.
No description provided.
No description provided.