We measured the analyzing power A and the spin-spin correlation parameter Ann in medium-P⊥2 proton-proton elastic scattering, using a polarized-proton target and the 18.5-GeV/c Brookhaven Alternating-Gradient Synchrotron polarized-proton beam. We found sharp dips in both A and Ann, which occur at different P⊥2 values. The unexpected sharp structure in the spin-spin force occurs near P⊥2=2.3 (GeV/c)2 where the elastic cross section has no apparent structure.
Errors contain both statistics and systematics.
The Brookhaven Alternating Gradient Synchrotron polarized proton beam incident on a beryllium target was used for inclusive Λ production at beam momenta of 13.3 and 18.5 GeV/c. The beam polarization was transverse to the beam direction with magnitude 0.63 at 13.3 GeV/c and 0.40 at 18.5 GeV/c. The Λ polarization was measured and found to be in agreement with results from earlier experiments which used unpolarized proton beams. Analyzing power AN and spin transfer DNN of the Λ’s were both measured and compared with a hyperon-polarization model in which the polarization arises from a Thomas-precession effect. There is good agreement with its predictions: AN=0 and DNN=0. In particular, our measurement of 〈DNN〉=-0.009±0.015 supports the idea that the valence quarks carry all of the hadron spin, since this assumption is implicit in the model’s use of SU(6) wave functions to form final-state hadrons from beam fragments and sea quarks. The presence of substantial KS samples at both beam momenta and Λ¯’s at 18.5 GeV/c prompted a measurement of their analyzing powers, which yielded AN(KS)=-0.094±0.012 at 13.3 GeV/c beam momentum and -0.076±0.015 at 18.5 GeV/c, and AN(Λ¯)=0.03±0.10.
No description provided.
No description provided.
No description provided.
The spin-spin correlation parameters CLL=(L,L;0,0)=ALL and CSL=(S,L;0,0)=ASL for np elastic scattering were measured for incident polarized-neutron–beam kinetic energies of 484 and 634 MeV over the center-of-mass angles from ≃80° to 180°. The data are important for determining the I=0 nucleon-nucleon amplitudes. These results are compared with phase-shift calculations.
No description provided.
No description provided.
No description provided.
We measured the analyzing power A and the spin-spin correlation parameter Ann, in large-P⊥2 proton-proton elastic scattering, using a polarized-proton target and the polarized-proton beam at the Brookhaven Alternating-Gradient Synchrotron. We also used our polarimeter to measure A at small P⊥2 at 13 GeV with good precision and found some deviation from the expected 1Plab behavior. At 18.5 GeV/c we found Ann=(−2±16)% at P⊥2=4.7 (GeV/c)2. Comparison with lower-energy data from the Argonne Zero-Gradient Synchrotron shows a sharp and surprising energy dependence for Ann at large P⊥2.
POL is error weighted average of polarized beam and target measurements.
POL is error-weighted average of polarized beam and target measurements.
POL is error-weighted average of polarized beam and target measurement.
The spin correlation parameter A oonn and the analyzing powers A oono and A ooon were measured simultaneously, in the energy range 0.5–0.8 GeV and in the angular region 40°–80° CM. The experiment used the polarized proton beam of SATURNE II and the Saclay frozen spin polarized target.
No description provided.
No description provided.
No description provided.
Using the new Brookhaven Alternating Gradient Synchrotron polarized proton beam and our polarized proton target, we measured the spin-spin correlation parameter Ann in 16.5-GeV/c proton-proton elastic scattering. We found an Ann of (6.1±3.0)% at P⊥2=2.2 (GeV/c)2. We also measured the analyzing power A in two independent ways, providing a good test of possible experimental errors. Comparing our new data with 12-GeV Argonne Zero Gradient Synchrotron data shows no evidence for strong energy dependence in Ann in this medium-P⊥2 region.
ERROR CONTAINS BOTH SYSTEMATIC AND STATISTICAL UNCERTAINTY.
Measurements of the spin transfer parameters, K NN and K LL , at 500, 650 and 800 MeV are presented for the reaction p d → n pp at 0°. The data are useful input to the NN data base and indicate that the quasi-free charge exchange (CEX) reaction us a useful mechanism for producing neutrons with at least 40% polarization at energies as low as 500 MeV.
QUASI-FREE NP ELASTIC SCATTERING.
The spin correlation parameter A00kk (pp) has been measured in the angular region 45°<θCM<90° at 0.719, 0.834, 0.874, 0.934, 0.995 and 1.095 GeV using the SATURNE II polarized proton beam incident on a polarized target. The parameters A00nn(pp and A00sk(pp) were measured at 0.874 in the same angular region.
No description provided.
No description provided.
No description provided.
We measured the differential cross section for proton-proton elastic scattering at 6 GeV/c, with both initial spins oriented normal to the scattering plane. The analyzing power A shows significant structure with a large broad peak reaching about 24% near P⊥2=1.6 (GeV/c)2. The spin-spin correlation parameter Ann exhibits more dramatic structure, with a small but very sharp peak rising rapidly to about 13% at 90°c.m.. This sharp peak may be caused by particle-identity effects.
No description provided.
The energy dependence of the spin-parallel and spin-antiparallel cross sections for p↑+p↑→p+p at 90°c.m. was measured for beam momenta between 6 and 12.75 GeV/c. The ratio (dσdt)parallel:(dσdt)antiparallel at 90° is about 1.2 up to 8 GeV/c and then increases rapidly to a value of almost 4 near 11 GeV/c. Our data indicate that this ratio may depend only on the variable P⊥2, and suggests that the ratio may reach a limiting value of about 4 for large P⊥2.
.
.
.