We have measured the neutron structure function g$_{2}^{n}$ and the virtual photon-nucleon asymmetry A$_{2}^{n}$ over the kinematic range $0.014\leq x \leq 0.7$ and $1.0 \leq Q^{2} \leq 17.0$ by scattering 48.3 GeV longitudinally polarized electrons from polarized $^{3}$He. Results for A$_{2}^{n}$ are significantly smaller than the $\sqrt{R}$ positivity limit over most of the measured range and data for g$_2^{n}$ are generally consistent with the twist-2 Wandzura-Wilczek prediction. Using our measured g$_{2}^{n}$ we obtain results for the twist-3 reduced matrix element $d_{2}^{n}$, and the integral $\int$g$_{2}^{n}(x)dx$ in the range $0.014\leq x \leq 1.0$. Data from this experiment are combined with existing data for g$_{2}^{n}$ to obtain an average for $d_{2}^{n}$ and the integral $\int$g$_{2}^{n}(x)dx$.
Data measured using the 2.75 degree spectrometer.
Data measured using the 5.5 degree spectrometer.
Measured value of the twist-3 reduced matrix element D2.
We present a Next-to-Leading order perturbative QCD analysis of world data on the spin dependent structure functions $g_1^p, g_1^n$, and $g_1^d$, including the new experimental information on the $Q^2$ dependence of $g_1^n$. Careful attention is paid to the experimental and theoretical uncertainties. The data constrain the first moments of the polarized valence quark distributions, but only qualitatively constrain the polarized sea quark and gluon distributions. The NLO results are used to determine the $Q^2$ dependence of the ratio $g_1/F_1$ and evolve the experimental data to a constant $Q^2 = 5 GeV^2$. We determine the first moments of the polarized structure functions of the proton and neutron and find agreement with the Bjorken sum rule.
Data from the 2.75 degree spectrometer.
Data from the 2.75 degree spectrometer evolved to a mean Q**2 of 5 GeV**2 using the MSBAR parameterization. The second systematic error is due to the evolution.
Data from the 5.5 degree spectrometer.
We report on a precision measurement of the neutron spin structure function $g^n_1$ using deep inelastic scattering of polarized electrons by polarized ^3He. For the kinematic range 0.014<x<0.7 and 1 (GeV/c)^2< Q^2< 17 (GeV/c)^2, we obtain $\int^{0.7}_{0.014} g^n_1(x)dx = -0.036 \pm 0.004 (stat) \pm 0.005 (syst)$ at an average $Q^2=5 (GeV/c)^2$. We find relatively large negative values for $g^n_1$ at low $x$. The results call into question the usual Regge theory method for extrapolating to x=0 to find the full neutron integral $\int^1_0 g^n_1(x)dx$, needed for testing quark-parton model and QCD sum rules.
No description provided.
No description provided.
No description provided.
Using data collected in the region of the Upsilon(4S) resonance with the CLEO II detector operating at the Cornell Electron Storage Ring CESR, we present the first observation of B mesons decaying into the charmed strange baryons Xi_c0 and Xi_c+. We find 79 +/- 27 Xi_c0 and 125 +/- 28 Xi_c+ candidates from B decays, leading to product branching fractions of BR(Bbar -> Xi_c0 X)BR(Xi_c0 -> Xi- pi+) = (0.144 +/- 0.048 +/- 0.021) x 10~-3 and BR(Bbar -> Xi_c+ X)BR(Xi_c+ -> Xi- pi+ pi+) = (0.453 +/- 0.096 +0.085-0.065) x 10~-3.
Charge conjugated states are included. P(P=4,C=MAX) equals sqrt(Ebeam**2 - m(XI/C)**2). The kinematic limit is : (P(XI/C) / P(P=4,C=MAX)) < 0.5.
Charge conjugated states are included. P(P=4,C=MAX) equals sqrt(Ebeam**2 - m(XI/C)**2). The kinematic limit is : (P(XI/C) / P(P=4,C=MAX)) < 0.5.
We present direct measurements of the $Z~0$-lepton coupling asymmetry parameters, $A_e$, $A_\mu$, and $A_\tau$, based on a data sample of 12,063 leptonic $Z~0$ decays collected by the SLD detector. The $Z$ bosons are produced in collisions of beams of polarized $e~-$ with unpolarized $e~+$ at the SLAC Linear Collider. The couplings are extracted from the measurement of the left-right and forward-backward asymmetries for each lepton species. The results are: $A_e=0.152 \pm 0.012 {(stat)} \pm 0.001 {(syst)}$, $A_\mu=0.102 \pm 0.034 \pm 0.002$, and $A_\tau=0.195 \pm 0.034 \pm 0.003$.
No description provided.
Using 4.8 fb$~{-1}$ of data taken with the CLEO II detector, the branching fraction for the Cabibbo-suppressed decay $D~+\to\pi~0\ell~+\nu$ measured relative to the Cabibbo favored decay $D~+\to\bar{K~0}\ell~+\nu$ is found to be $0.046\pm 0.014\pm 0.017$. Using $V_{cs}$ and $V_{cd}$ from unitarity constraints, we determine $| f_+~{\pi}(0)/f_+~K(0)|~2=0.9\pm 0.3\pm 0.3$ We also present a 90% confidence level upper limit for the branching ratio of the decay $D~+ \to \eta e~+\nu_e$ relative to that for $D~+ \to \pi~0 e~+\nu_e$ of 1.5.
Formfactors for the D+ (D-) decay into pseudoscalar P. Charge conjugate states are implied. LEPTON+ means E+ or MU+. VCD and VCS are the elements of the CKM matrix (See R.M.Barnett et al (PDG), PR D54, 1 (1996)).
The diffractive production of ρ0(770 @#@) mesons in muon-proton interactions is studied in the kinematic region 0.15 GeV2< Q2< 20 GeV2 and 20 GeV < ? < 420 GeV. The data were obtained in the Fermilab fixed-target experiment E665 with primary muons of 470 GeV energy. Results are presented on the Q2, x and ? dependence of the cross section, on the shape of the ρ+ρt - mass spectrum, on the slope of the diffraction peak and on the production and decay angular distributions of the ρ0(770). The cross section for diffractive production of ρ0 by virtual photons on protons depends mainly on Q2. At fixed Q2, no significant dependence on x or ? is observed. The extrapolation to Q2 = 0 yields a photoproduction cross section of (10.30 ± 0.33) μb. The slope of the t′ distribution has a value of (7.0 ± 0.2) GeV−2, with a tendency to decrease as Q2 increases. The production and decay angular distributions of the ρ0 depend strongly on Q2 and are consistent with s-channel helicity conservation. The ratio R = σl/σt deduced from the decay angular distributions rises strongly with Q2, passing the value of 1 at Q2≈ 2 GeV2.
Statistical errors only.
Statistical errors only.
Cross section extrapolated to Q**2 = 0.
Differential and total cross sections for π + absorption on 12 C are presented at incident pion energies of 100 and 165 MeV. This is the first time that this reaction has been measured with a combination of good energy and angle information over an extensive region of phase space. Results are compared to extensive Monte Carlo simulations in order to investigate the role of two- and multinucleon absorption processes in this nucleus. Signatures of ISI and FSI in the pion absorption process are also investigated, in order to explain the complex reaction mechanism implied by the data.
Axis error includes +- 20/20 contribution (Relative systematic uncertainty).
Axis error includes +- 20/20 contribution (Relative systematic uncertainty).
Using the CLEO detector at the Cornell $e~+e~-$ storage ring, CESR, we study the two-photon production of $\Lambda \overline{\Lambda}$, making the first observation of $\gamma \gamma \to \Lambda \overline{\Lambda}$. We present the cross-section for $ \gamma \gamma \to \Lambda \overline{\Lambda}$ as a function of the $\gamma \gamma$ center of mass energy and compare it to that predicted by the quark-diquark model.
No description provided.
No description provided.
No description provided.
Using data collected with the CLEO II detector at the Cornell Electron Storage Ring, we determine the ratio R(chrg) for the mean charged multiplicity observed in Upsilon(1S)->gggamma events, to the mean charged multiplicity observed in e+e- -> qqbar gamma events. We find R(chrg)=1.04+/-0.02+/-0.05 for jet-jet masses less than 7 GeV.
No description provided.