Photoabsorption cross sections in hydrogen and deuterium have been measured from 3.7 to 17.9 GeV. The energy dependences are similar to those of strong-interaction total cross sections, as expected from the vector-meson-dominance model. The magnitude of σT(γp) can be compared with data from γp→ρ0p to determine a γ−p coupling constant, γρ24π=0.37±0.03. This value disagrees with that obtained on the ρ mass shell, and hence there is only qualitative agreement with the vector-meson-dominance model.
Axis error includes +- 1/1 contribution (CORRECTION OF ACCEPTANCE, POSSIBLE LOSSES, ETC).
Multiple particle production in electron-positron interactions has been observed in an experiment performed at Adone, the Frascati 2×1.5 GeV e+e− storage ring. A total number of 239 events collected at several energies of the incident electron and positron beams between 0.8 and 1.0 GeV were analysed. The distribution of the multiplicity of charged particles produced in the final state is discussed and some upper limits on these multiplicities are reported. The observed lower limit to the total cross-section for multiple particle production in e+e− interactions, averaged over the energy range explored, is 3·10−32 cm2 with a statistical error of ±10% and a systematic uncertainty of ±25%.
LOWER BOUND FROM OBSERVED CHARGED PARTICLES.
In the reaction p p → 3π + 3π − 2227 events, and in the reaction p p → 3π + 3π − π 0 6578 events have been analyzed. The general characteristics of the reactions, such as total cross sections, angular and momentum distributions, the production of ϱ, f, ω and η mesons, and angular correlations are presented.
No description provided.
THETA being the angle between PI+ and P (or PI- and PBAR) in CMS.
THETA being the angle between PI+ and P (or PI- and PBAR) in CMS.
The differential cross section for π + p elastic scattering at 895, 945, 995 and 1040 MeV/ c has been measured in a hydrogen bubble chamber. The results are in good agreement with previous measurements using counter techniques except at extreme backward angles where significantly lower cross sections are obtained.
No description provided.
No description provided.
No description provided.
None
No description provided.
We have analyzed the two-prong final states in π+p interactions at 3.9 GeVc. Our result for elastic scattering is σ (elastic) = 6.50±0.1 mb (statistical error only). We find the elastic slope to be 6.61±0.14 (GeVc)−2. We find the elastic forward cross section to be 40.0±1.4 mb(GeVc)2. We have applied a longitudinal-momentum analysis to the one-pion-production channel. We find the cross section for the reaction π++p→π++π0+p to be 2.30±0.06 mb and that for π++p→π++π++n to be 1.45±0.05 mb. For resonance-production cross sections in these channels we find Δ(1236)=0.60±0.07 mb, ρ(760)=0.86±0.06 mb, and diffraction dissociation = 1.69±0.11 mb. We find that we can satisfactorily fit all distributions in the one-pion-production channel without assuming any phase-space production. In the missing-mass channel we observe dominant Δ++(1236) production plus evidence for A2+ production.
No description provided.
No description provided.
No description provided.
Measurements of multiple particle production at ADONE, the Frascati e + e − storage ring, have been carried out at C.M. energies 1.4 GeV to 2.4 GeV. The hadronic nature of the observed particles is discussed and a lower limit of 30 nbarn set for the total multiparticle cross section.
LOWER LIMIT FOR PRODUCTION OF AT LEAST TWO CHARGED HADRONS.
Proton-proton elastic scattering has been measured over the angular range 7 to 16 mrad at centre-of-mass energies of 31, 45 and 53 GeV using the CERN Intersecting Storage Rings. The results indicate that the diffraction peak has continued to shrink with increasing energy, but not as fast as suggested by the results at lower energies.
No description provided.
Total and differential elastic Σ ± p scattering cross sections have been measured in the momentum interval of 130–180 MeV/ c . From the Σ ± p total cross section allowed regions for the singlet and triplet scattering lengths are derived, applying the effective range approximation.
No description provided.
No description provided.
A measurement of the differential cross section for the reaction n + p → d + π° has been made using a neutron beam with kinetic energies up to 720 MeV. The angle and momentum of the deuterons were measured using an analyzing magnet and wire spark chambers with a magnetostrictive readout. The photons from the decaying π° were not detected. The neutron energy was calculated from the measured deuteron angle and momentum. The cross sections are compared to those for the reaction π + + d ⇆ p + p as a test of isotopic spin invariance in strong interactions. The symmetry of the cross sections about 90° is also investigated, and an upper limit of about 1% is placed on the real part of the ratio of isospin-violating to isospin-conserving amplitudes.
EKIN IS 325 TO 675 MEV.