We present ratios of the numbers of charged antiparticles to particles (pions, kaons and protons) in Au + Au collisions at $\sqrt{s_{NN}}=200$ GeV as a function of rapidity in the range $y$=0-3. While the particle ratios at midrapidity are approaching unity, the $K^-/K^+$ and $\bar{p}/p$ ratios decrease significantly at forward rapidities. An interpretation of the results within the statistical model indicates a reduction of the baryon chemical potential from $\mu_B \approx 130$MeV at $y$=3 to $\mu_B \approx 25$MeV at $y$=0.
$\mathrm{\pi}^{-}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$, $\mathrm{\pi}^{-}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\mathrm{K}^{-}/\mathrm{K}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$, $\mathrm{K}^{+}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
$\overline{\mathrm{p}}/\mathrm{p}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$, $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$
Measurements, with the BRAHMS detector, of the antiproton to proton ratio at central and forward rapidities are presented for Au+Au reactions at sqrt{s_{NN}}=130 GeV, and for three different collision centralities. For collisions in the 0-40% centrality range we find $N(\bar{{\rm p}})/N({\rm p}) = 0.64 +- 0.04 (stat.) +- 0.06 (syst.) at y ~0, 0.66 +- 0.03 +- 0.06 at y ~ 0.7, and 0.41 +- 0.04 +- 0.06 at y ~ 2. The ratios are found to be nearly independent of collision centrality and transverse momentum. The measurements demonstrate that the antiproton and proton rapidity densities vary differently with rapidity, and indicate that a net-baryon free midrapidity plateau (Bjorken limit) is not reached at this RHIC energy.
$\overline{\mathrm{p}}/\mathrm{p}$ versus $\mathrm{Centrality}$ for $\overline{\mathrm{p}}$, $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=130\,\mathrm{Ge\!V}$
$\overline{\mathrm{p}}/\mathrm{p}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$, $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=130\,\mathrm{Ge\!V}$
$\overline{\mathrm{p}}/\mathrm{p}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$, $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=130\,\mathrm{Ge\!V}$