A search for the non-resonant production of Higgs boson pairs in the $HH\rightarrow b\bar{b}\tau^+\tau^-$ channel is performed using 140 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of $13$ TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. The analysis strategy is optimised to probe anomalous values of the Higgs boson self-coupling modifier $\kappa_\lambda$ and of the quartic $HHVV$ ($V = W,Z$) coupling modifier $\kappa_{2V}$. No significant excess above the expected background from Standard Model processes is observed. An observed (expected) upper limit $\mu_{HH}<5.9$$(3.3)$ is set at 95% confidence-level on the Higgs boson pair production cross-section normalised to its Standard Model prediction. The coupling modifiers are constrained to an observed (expected) 95% confidence interval of $-3.1 < \kappa_\lambda < 9.0$ ($-2.5 < \kappa_\lambda < 9.3$) and $-0.5 < \kappa_{2V} < 2.7$ ($-0.2 < \kappa_{2V} < 2.4$), assuming all other Higgs boson couplings are fixed to the Standard Model prediction. The results are also interpreted in the context of effective field theories via constraints on anomalous Higgs boson couplings and Higgs boson pair production cross-sections assuming different kinematic benchmark scenarios.
Observed (filled circles) and expected (open circles) 95% CL upper limits on $\mu_{HH}$ from the fit of each individual channel and the combined fit in the background-only ($\mu_{HH} = 0$) hypothesis. The dashed lines indicate the expected 95% CL upper limits on $\mu_{HH}$ in the SM hypothesis ($\mu_{HH} = 1$). The inner and outer bands indicate the $\pm 1\sigma$ and $\pm 2\sigma$ variations, respectively, on the expected limit with respect to the background-only hypothesis due to statistical and systematic uncertainties.
Observed and expected 95% CL upper limits on $\mu_{HH}$, $\mu_{ggF}$ and $\mu_{VBF}$ from the individual SR likelihood fits as well as the combined results. The $\mu_{ggF}$ and $\mu_{VBF}$ limits are quoted both from the results of the simultaneous fit of both signal strengths (central column), and from independent fits for the individual production modes, assuming the other to be as predicted by the SM. The uncertainties quoted on the combined expected upper limits correspond to the 1σ uncertainty band.
Observed (solid line) value of $-2\ln\Lambda$ as a function of $\kappa_{\lambda}$ for the combined fit, when all other coupling modifiers are fixed to their SM predictions.
A search for dark matter produced in association with a Higgs boson in final states with two hadronically decaying $\tau$-leptons and missing transverse momentum is presented. The analysis uses $139$ fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV collected by the ATLAS experiment at the Large Hadron Collider between 2015 and 2018. No evidence for physics beyond the Standard Model is found. The results are interpreted in terms of a 2HDM+$a$ model. Exclusion limits at 95% confidence level are derived. Model-independent limits are also set on the visible cross section for processes beyond the Standard Model producing missing transverse momentum in association with a Higgs boson decaying to $\tau$-leptons.
<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <br><br> <b>CLs and CLs+b values</b> <ul> <li><a href=?table=CLs_tanb_mA_grid_Expected>Expected CLs values in mA vs tanB grid, Low mA SR</a> <li><a href=?table=CLs_tanb_mA_grid_Observed>Observed CLs values in mA vs tanB grid, Low mA SR</a> <li><a href=?table=CLs_ma_mA_grid_HighmA_SR_Expected>Expected CLs values in mA vs ma grid, High mA SR</a> <li><a href=?table=CLs_ma_mA_grid_HighmA_SR_Observed>Observed CLs values in mA vs ma grid, High mA SR</a> <li><a href=?table=CLs_ma_mA_grid_LowmA_SR_Expected>Expected CLs values in mA vs ma grid, Low mA SR</a> <li><a href=?table=CLs_ma_mA_grid_LowmA_SR_Observed>Observed CLs values in mA vs ma grid, Low mA SR</a> <li><a href=?table=CLsplusb_tanb_mA_grid>CLs+b values in mA vs tanB grid, Low mA SR</a> <li><a href=?table=CLsplusb_ma_mA_grid_HighmA_SR>CLs+b values in mA vs ma grid, High mA SR</a> <li><a href=?table=CLsplusb_ma_mA_grid_LowmA_SR>CLs+b values in mA vs ma grid, Low mA SR</a> </ul> <b>Cutflow tables</b> <ul> <li><a href=?table=Cutflows_ggf_LowmA_SR>Low mA SR, ggF production</a> <li><a href=?table=Cutflows_ggf_HighmA_SR>High mA SR, ggF production</a> <li><a href=?table=Cutflows_bb_LowmA_SR>Low mA SR, bb production</a> <li><a href=?table=Cutflows_bb_HighmA_SR>High mA SR, bb production</a> </ul> <b>Kinematic Distributions</b> <ul> <li><a href=?table=KinDist_LowmA_SR>Low mA SR mTtau1+mTtau2 distribution</a> <li><a href=?table=KinDist_HighmA_SR>High mA SR mTtau1+mTtau2 distribution</a> </ul> <b>Limits</b> <ul> <li><a href=?table=Expected_95%_CL_exclusion_limit_mAma_grid>Expected 95% CL exclusion limit in mA vs ma grid</a> <li><a href=?table=Observed_95%_CL_exclusion_limit_mAma_grid>Observed 95% CL exclusion limit in mA vs ma grid</a> <li><a href=?table=Expected_pm1sigma_95%_CL_exclusion_limit_mAma_grid>Expected +-1 sigma 95% CL exclusion limit in mA vs ma grid</a> <li><a href=?table=Expected_95%_CL_exclusion_limit_mAtanB_grid>Expected 95% CL exclusion limit in mA vs tanB grid</a> <li><a href=?table=Observed_95%_CL_exclusion_limit_mAtanB_grid>Observed 95% CL exclusion limit in mA vs tanB grid</a> <li><a href=?table=Expected_pm1sigma_95%_CL_exclusion_limit_mAtanB_grid>Expected +-1 sigma 95% CL exclusion limit in tanB grid</a> </ul> <b>Acceptance and efficiency</b> <ul> <li><a href=?table=table1>Acceptance, High mA SR, mA vs tanB grid, 400-750 GeV, bb prod</a> <li><a href=?table=table2>Acceptance, High mA SR, mA vs tanB grid, >750 GeV, bb prod</a> <li><a href=?table=table3>Acceptance, Low mA SR, mA vs tanB grid, 100-250 GeV, bb prod</a> <li><a href=?table=table4>Acceptance, Low mA SR, mA vs tanB grid, 250-400 GeV, bb prod</a> <li><a href=?table=table5>Acceptance, Low mA SR, mA vs tanB grid, 400-550 GeV, bb prod</a> <li><a href=?table=table6>Acceptance, Low mA SR, mA vs tanB grid, >550 GeV, bb prod</a> <li><a href=?table=table7>Acceptance, High mA SR, mA vs ma grid, 400-750 GeV, bb prod</a> <li><a href=?table=table8>Acceptance, High mA SR, mA vs ma grid, >750 GeV, bb prod</a> <li><a href=?table=table9>Acceptance, Low mA SR, mA vs ma grid, 100-250 GeV, bb prod</a> <li><a href=?table=table10>Acceptance, Low mA SR, mA vs ma grid, 250-400 GeV, bb prod</a> <li><a href=?table=table11>Acceptance, Low mA SR, mA vs ma grid, 400-550 GeV, bb prod</a> <li><a href=?table=table12>Acceptance, Low mA SR, mA vs ma grid, >550 GeV, bb prod</a> <li><a href=?table=table13>Acceptance, High mA SR, mA vs tanB grid, 400-750 GeV, ggF prod</a> <li><a href=?table=table14>Acceptance, High mA SR, mA vs tanB grid, >750 GeV, ggF prod</a> <li><a href=?table=table15>Acceptance, Low mA SR, mA vs tanB grid, 100-250 GeV, ggF prod</a> <li><a href=?table=table16>Acceptance, Low mA SR, mA vs tanB grid, 250-400 GeV, ggF prod</a> <li><a href=?table=table17>Acceptance, Low mA SR, mA vs tanB grid, 400-550 GeV, ggF prod</a> <li><a href=?table=table18>Acceptance, Low mA SR, mA vs tanB grid, >550 GeV, ggF prod</a> <li><a href=?table=table19>Acceptance, High mA SR, mA vs ma grid, 400-750 GeV, ggF prod</a> <li><a href=?table=table20>Acceptance, High mA SR, mA vs ma grid, >750 GeV, ggF prod</a> <li><a href=?table=table21>Acceptance, Low mA SR, mA vs ma grid, 100-250 GeV, ggF prod</a> <li><a href=?table=table22>Acceptance, Low mA SR, mA vs ma grid, 250-400 GeV, ggF prod</a> <li><a href=?table=table23>Acceptance, Low mA SR, mA vs ma grid, 400-550 GeV, ggF prod</a> <li><a href=?table=table24>Acceptance, Low mA SR, mA vs ma grid, >550 GeV, ggF prod</a> <li><a href=?table=table25>Efficiency, High mA SR, mA vs tanB grid, 400-750 GeV, bb prod</a> <li><a href=?table=table26>Efficiency, High mA SR, mA vs tanB grid, >750 GeV, bb prod</a> <li><a href=?table=table27>Efficiency, Low mA SR, mA vs tanB grid, 100-250 GeV, bb prod</a> <li><a href=?table=table28>Efficiency, Low mA SR, mA vs tanB grid, 250-400 GeV, bb prod</a> <li><a href=?table=table29>Efficiency, Low mA SR, mA vs tanB grid, 400-550 GeV, bb prod</a> <li><a href=?table=table30>Efficiency, Low mA SR, mA vs tanB grid, >550 GeV, bb prod</a> <li><a href=?table=table31>Efficiency, High mA SR, mA vs ma grid, 400-750 GeV, bb prod</a> <li><a href=?table=table32>Efficiency, High mA SR, mA vs ma grid, >750 GeV, bb prod</a> <li><a href=?table=table33>Efficiency, Low mA SR, mA vs ma grid, 100-250 GeV, bb prod</a> <li><a href=?table=table34>Efficiency, Low mA SR, mA vs ma grid, 250-400 GeV, bb prod</a> <li><a href=?table=table35>Efficiency, Low mA SR, mA vs ma grid, 400-550 GeV, bb prod</a> <li><a href=?table=table36>Efficiency, Low mA SR, mA vs ma grid, >550 GeV, bb prod</a> <li><a href=?table=table37>Efficiency, High mA SR, mA vs tanB grid, 400-750 GeV, ggF prod</a> <li><a href=?table=table38>Efficiency, High mA SR, mA vs tanB grid, >750 GeV, ggF prod</a> <li><a href=?table=table39>Efficiency, Low mA SR, mA vs tanB grid, 100-250 GeV, ggF prod</a> <li><a href=?table=table40>Efficiency, Low mA SR, mA vs tanB grid, 250-400 GeV, ggF prod</a> <li><a href=?table=table41>Efficiency, Low mA SR, mA vs tanB grid, 400-550 GeV, ggF prod</a> <li><a href=?table=table42>Efficiency, Low mA SR, mA vs tanB grid, >550 GeV, ggF prod</a> <li><a href=?table=table43>Efficiency, High mA SR, mA vs ma grid, 400-750 GeV, ggF prod</a> <li><a href=?table=table44>Efficiency, High mA SR, mA vs ma grid, >750 GeV, ggF prod</a> <li><a href=?table=table45>Efficiency, Low mA SR, mA vs ma grid, 100-250 GeV, ggF prod</a> <li><a href=?table=table46>Efficiency, Low mA SR, mA vs ma grid, 250-400 GeV, ggF prod</a> <li><a href=?table=table47>Efficiency, Low mA SR, mA vs ma grid, 400-550 GeV, ggF prod</a> <li><a href=?table=table48>Efficiency, Low mA SR, mA vs ma grid, >550 GeV, ggF prod</a> </ul>
Expected CLs values in the Low mA SR, mA vs tanB signal grid.
Observed CLs values in the Low mA SR, mA vs tanB signal grid.
A search for high-mass charged and neutral bosons decaying to $W\gamma$ and $Z\gamma$ final states is presented in this paper. The analysis uses a data sample of $\sqrt{s} = 13$ TeV proton-proton collisions with an integrated luminosity of 139 fb$^{-1}$ collected by the ATLAS detector during LHC Run 2 operation. The sensitivity of the search is determined using models of the production and decay of spin-1 charged bosons and spin-0/2 neutral bosons. The range of resonance masses explored extends from 1.0 TeV to 6.8 TeV. At these high resonance masses, it is beneficial to target the hadronic decays of the $W$ and $Z$ bosons because of their large branching fractions. The decay products of the high-momentum $W/Z$ bosons are strongly collimated and boosted-boson tagging techniques are employed to improve the sensitivity. No evidence of a signal above the Standard Model backgrounds is observed, and upper limits on the production cross-sections of these bosons times their branching fractions to $W\gamma$ and $Z\gamma$ are derived for various boson production models.
The jet mass distribution of large-$R$ jets originating from the hadronic decay of $W$ and $Z$ bosons produced from the decay of BSM bosons with mass $m_X = 1000$ GeV. The decays simulated are for the production models $q\bar{q}' \to X^{\pm} \to W^{\pm}\gamma$ with a spin-1 resonance $X^{\pm}$ and $gg\to X^0 \to Z\gamma$ with a spin-0 resonance $X^{0}$.
The jet mass distribution of large-$R$ jets originating from the hadronic decay of $W$ and $Z$ bosons produced from the decay of BSM bosons with mass $m_X = 4000$ GeV. The decays simulated are for the production models $q\bar{q'}\to X^{\pm} \to W^{\pm}\gamma$ with a spin-1 resonance $X^{\pm}$ and $gg\to X^0 \to Z\gamma$ with a spin-0 resonance $X^{0}$.
Total efficiencies for the selection of signal events after categorization and application of the tighter photon $E_{\mathrm{T}}^{\gamma}$ selection used to optimize the signal significance spin-0 $gg\to X^0 \to Z\gamma$. In addition to the total efficiency, contributions to the signal selection from each of the separate event categories are shown. The efficiencies calculated from MC samples with $W/Z$ hadronic decays are shown as the points on each curve. The line presents interpolated results.
A search for a massive $W'$ gauge boson decaying to a top quark and a bottom quark is performed with the ATLAS detector in $pp$ collisions at the LHC. The dataset was taken at a centre-of-mass energy of $\sqrt{s} = 8$ TeV and corresponds to 20.3 fb$^{-1}$ of integrated luminosity. This analysis is done in the hadronic decay mode of the top quark, where novel jet substructure techniques are used to identify jets from high-momentum top quarks. This allows for a search for high-mass $W'$ bosons in the range $1.5 - 3.0$ TeV. $b$-tagging is used to identify jets originating from $b$-quarks. The data are consistent with Standard Model background-only expectations, and upper limits at 95% confidence level are set on the $W' \rightarrow tb$ cross section times branching ratio ranging from $0.16$ pb to $0.33$ pb for left-handed $W'$ bosons, and ranging from $0.10$ pb to $0.21$ pb for $W'$ bosons with purely right-handed couplings. Upper limits at 95% confidence level are set on the $W'$-boson coupling to $tb$ as a function of the $W'$ mass using an effective field theory approach, which is independent of details of particular models predicting a $W'$ boson.
m_tb distributions in data in the one b-tag and the two b-tag category, together with background-only fits excluding the region 4-5 TeV which is beyond the range considered for this analysis. Potential WPRIME_L signal shapes in the hadronic top-quark decay channel with gPRIME = gSM are also given for resonance masses of 1.5, 2.0, 2.5 and 3.0 TeV.
Limits at 95% CL on the cross section times branching ratio to TOP BOTTOM for the left-handed and for the right-handed WPRIME model. The expected cross section for WPRIME production with gprime = gSM is also shown.
Observed and expected 95% CL limits on the ratio of coupling gWPRIME_L/gSM (gWPRIME_R/gSM) of the WPRIME_L (WPRIME_R) model as a function of the WPRIME mass.
Many extensions of the Standard Model posit the existence of heavy particles with long lifetimes. In this Letter, results are presented of a search for such particles, which decay at a significant distance from their production point, using a final state containing charged hadrons and an associated muon. This analysis uses a data sample of proton-proton collisions at sqrt(s)= 7 TeV corresponding to an integrated luminosity of 4.4 fb-1 collected in 2011 by the ATLAS detector operating at the Large Hadron Collider. Results are interpreted in the context of R-parity violating supersymmetric scenarios. No events in the signal region are observed and limits are set on the production cross section for supersymmetric particles, multiplied by the square of the branching ratio for a neutralino to decay to charged hadrons and a muon, as a function of the neutralino lifetime. To allow these limits to be used in a variety of models, they are presented for a range of squark and neutralino masses.
Efficiency-vs-radial-vertex-position without re-tracking The efficiency for reconstructing a displaced vertex passing all cuts, as a function of radial distance from the z-axis to the vertex positon. The retrack and noretrack suffixes refer to whether or not the procedure known as re-tracking, where the tracking algorithm is re-run with looser cuts, on the leftover hits from standard tracking, was used to select the tracks that were input to the vertexing algorithm.
Efficiency-vs-radial-vertex-position with re-tracking The efficiency for reconstructing a displaced vertex passing all cuts, as a function of radial distance from the z-axis to the vertex positon. The retrack and noretrack suffixes refer to whether or not the procedure known as re-tracking, where the tracking algorithm is re-run with looser cuts, on the leftover hits from standard tracking, was used to select the tracks that were input to the vertexing algorithm.
Event selection efficiency vs mean proper decay length The MH, HH, ML suffix used for overlaying the graphs refers to the combinations of squark and neutralino masses in the signal MC sample: MH is 700GeV squarks and 494GeV neutralinos, HH is 1.5TeV squarks and 494GeV neutralinos, and ML is 700GeV squarks and 108GeV neutralinos. The tables show the efficiency for reconstructing a signal event, where at least one vertex candidate passes all selection requirements, as a function of the proper decay length c*tau of the neutralino.
A search for events with large missing transverse momentum, jets, and at least two tau leptons has been performed using 2 fb^-1 of proton-proton collision data at sqrt(s) = 7 TeV recorded with the ATLAS detector at the Large Hadron Collider. No excess above the Standard Model background expectation is observed and a 95% CL visible cross section upper limit for new phenomena is set. A 95% CL lower limit of 32 TeV is set on the GMSB breaking scale Lambda independent of tan(beta). These limits provide the most stringent tests to date in a large part of the considered parameter space.
The observed PT spectrum of the leading TAU candidates and the estimated SM background after pre-selection of candidate events, soft multi-jet rejection and the requirement of two or more TAUS and no light leptons.
The distribution of the effective mass of the two leading TAU candidates in data (with statistical uncertainties only) and the estimated SM background after pre-selection of candidate events, soft multi-jet rejection and the requirement of two or more TAUS and no light leptons.
The distribution of the sum of the transverse masses of the two leading TAU candidates in data (with statistical uncertainties only) and the estimated SM background after pre-selection of candidate events, soft multi-jet rejection and the requirement of two or more TAUS and no light leptons.