Using an 11-GeV bremsstrahlung beam and the SLAC 20-GeV spectrometer, we have measured K + missing mass spectra from hydrogen and deuterium at five angles with momentum transfer squared ranging from 0.025 to 0.46 GeV 2 . Steps in the spectra as a function of missing mass were found corresponding to production of Λ , Σ , Σ 1385 + Λ 1405 and Λ 1520 . The ratio Σ − and Σ 0 production is not consistent with pure isotopic spin 1 2 in the t -channel for the reaction γ N→K + Σ . The cross sections for γ N → K + Σ 1385 compared with γ N→ πΔ violate an SU(3) prediction.
'3'.
No description provided.
No description provided.
The charge excharge reaction K − p → K 0 n has been studied in a event/μb exposure of the CERN 2m hydrogen bubble chamber to a 3.95 GeV/ c K − beam. The differential cross section d σ /d t exhibits a change of slope at −1 ≈ 0.8 GeV 2 .
No description provided.
No description provided.
Electron-proton elastic scattering cross sections have been measured at the Stanford Linear Accelerator Center at four-momentum transfers squared (q 2 ) of 1.0, 1.5, 2.0, 2.5and 3.75 (GeV/ c ) 2 . The angular distributions at q 2 = 2.5 and 3.75 (GeV/ c ) 2 are sufficient to provide values of the ratio G E / G M independent of the results from other laboratories. Our results are compatible with scaling, G E (q 2 ) = G M (q 2 )/ μ , within the experimental errors.
No description provided.
No description provided.
No description provided.
The reactions γA→π±A* have been studied at four-momentum transfers −t<~0.5 GeV2 for seven elements ranging from hydrogen to lead. Exclusion-principle suppression is clearly visible at small-momentum transfer. Neither the A dependence nor the energy dependence of the cross sections agrees with the predictions of the vector-dominance model. The ratio of π−π+ production requires equal spatial distributions for the protons and neutrons in nuclei. Some K+ data are also presented.
No description provided.
No description provided.
No description provided.
Cross sections for the reactions γp→K+Λ and γp→K+Σ0 have been measured at squared four-momentum transfer (−t) from 0.005 to 2 GeV2, at photon energies 5, 8, 11, and 16 GeV. For −t>0.2 GeV2 each of the K+ cross sections is about ⅓ of the π+n photoproduction cross section, having nearly the same energy and momentum-transfer dependence. The K+ cross sections fall off at small |t|, however, in contrast to the sharp forward spike seen in π+n; this leads to a disagreement with an SU(3) prediction for −t<0.1 GeV2. The ratio of K+Σ0 to K+Λ cross sections is typically between 0.5 and 1.0.
'1'.
'1'.
'1'.
The differential cross sections for the elastic scattering of negative pions by deuterons have been measured for 2.01-, 3.77-, and 5.53-GeV/c incident pion momenta, over an interval of the squared four-momentum transfer from -0.25 (GeV/c)2 to ∼-1.0 (GeV/c)2. The results are consistent with calculations based on a Glauber model of the scattering process.
No description provided.
No description provided.
No description provided.
None
Only statistical errors are given.
Only statistical errors are given.
The cross section for γp→π−Δ++(1236), measured at 5, 8, 11, and 16 GeV from nearzero momentum transfer to -1 GeV2 (-2 GeV2 at 16 GeV), rises from small t to a maximum near −t=mπ2, then falls as e12t out to −t≈0.2 GeV2, after which it becomes roughly equal in slope and magnitude to the single π+ photoproduction cross section (e3t). At fixed t, the cross section varies as k−2, where k is the laboratory photon energy. The results do not agree well with the simple vector-dominance model.
'1'.
'1'.
'1'.
The differential cross sections for single-π+ photoproduction from hydrogen have been measured over a range of momentum transfers from -2×10−4 to -2 (GeV/c)2, and photon energies from 5 to 16 GeV. The differential cross section increases by roughly a factor of 2 as the magnitude of the square of the momentum transfer decreases from 0.02 (GeV/c)2. The cross section falls approximately as exp(−3|t|) at large momentum transfers, with a similar momentum-transfer dependence of the cross section at all photon energies studied.
No description provided.
No description provided.
No description provided.
This report is based on about 10 500 pp collision events produced in the 81-cm Saclay hydrogen bubble chamber at CERN. Cross-section values for the different identified final states and resonances are given. The isobars N*1238, N*1420, N*1518, N*1688, N*1920, and N*2360 were identified and their production cross-section values were found via a best-fit analysis of different invariant-mass histograms. About 70% of the isobars are connected with the quasi-two-body reactions pp→N*N and pp→N*N*. The reaction pp→nN*1238(pπ+) with a cross section of 3.25±0.16 mb was analyzed in terms of a peripheral absorption model, which was found to be in good agreement with the data. Various decay modes of the N*1518 and N*1688 isobars were observed and their branching ratios determined. The branching ratio of nπ+ to pπ+π− was found to be 0.77±0.45 for N*1518 and 0.67±0.40 for N*1688. The branching ratio of N*1238(pπ+)π− to pπ+π− of N*1688 was estimated to be 0.74±0.14. Pion production turned out to be mainly due to decay of isobars. Production of meson resonances turned out to be less important; the reaction pp→ppω0→ppπ+π−π0 was identified with a cross-section value of 0.11±0.02 mb. Finally, the production of neutral strange particles with a cross section of 0.45±0.04 mb is descussed. Strong formation of Y*1385 is observed.
No description provided.
No description provided.
No description provided.