Proton-proton interactions resulting in final states with two photons are studied in a search for the signature of flavor-changing neutral current interactions of top quarks (t) and Higgs bosons (H). The analysis is based on data collected at a center-of-mass energy of 13 TeV with the CMS detector at the LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. No significant excess above the background prediction is observed. Upper limits on the branching fractions ($\mathcal{B}$) of the top quark decaying to a Higgs boson and an up (u) or charm quark (c) are derived through a binned fit to the diphoton invariant mass spectrum. The observed (expected) 95% confidence level upper limits are found to be 0.019 (0.031)% for $\mathcal B$(t $\to$ Hu) and 0.073 (0.051)% for $\mathcal{B}$(t $\to$ Hc). These are the strictest upper limits yet determined.
Expected and observed 95\% CL upper limits on the branching fraction of the top quark decaying to the Higgs boson and a light-flavor quark (either an up or a charm quark)
A search for low-mass dilepton resonances in Higgs boson decays is conducted in the four-lepton final state. The decay is assumed to proceed via a pair of beyond the standard model particles, or one such particle and a Z boson. The search uses proton-proton collision data collected with the CMS detector at the CERN LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$, at a center-of-mass energy $\sqrt{s} =$ 13 TeV. No significant deviation from the standard model expectation is observed. Upper limits at 95% confidence level are set on model-independent Higgs boson decay branching fractions. Additionally, limits on dark photon and axion-like particle production, based on two specific models, are reported.
Exclusion limit for BrHXX_Br2Xee
Exclusion limit for BrHXX_Br2Xmumu
Exclusion limit for BrHXX_Br2Xll
A search is presented for long-lived particles produced in pairs in proton-proton collisions at the LHC operating at a center-of-mass energy of 13 TeV. The data were collected with the CMS detector during the period from 2015 through 2018, and correspond to a total integrated luminosity of 140 fb$^{-1}$. This search targets pairs of long-lived particles with mean proper decay lengths between 0.1 and 100 mm, each of which decays into at least two quarks that hadronize to jets, resulting in a final state with two displaced vertices. No significant excess of events with two displaced vertices is observed. In the context of $R$-parity violating supersymmetry models, the pair production of long-lived neutralinos, gluinos, and top squarks is excluded at 95% confidence level for cross sections larger than 0.08 fb, masses between 800 and 3000 GeV, and mean proper decay lengths between 1 and 25 mm.
Event yields in the control samples in data. The ''one-vertex'' events correspond to events containing exactly one vertex with the specified number of tracks. The ''two-vertex'' events have two or more vertices containing the specified numbers of tracks. We seek the signal in the $\geq$5-track two-vertex sample.
The distribution of distances between vertices in the $x$-$y$ plane, $d_{\mathrm{VV}}$, for three simulated multijet signals each with a mass of 1600 GeV, with the background template distribution overlaid. The production cross section for each signal model is assumed to be the lower limit excluded by CMS-EXO-17-018, corresponding to values of 0.8, 0.25, and 0.15 fb for the samples with $c\tau =$ 0.3, 1.0, and 10 mm, respectively. The last bin includes the overflow events. The two vertical pink dashed lines separate the regions used in the fit.
Multijet signal efficiencies as a function of the signal mass and lifetime for events satisfying all event and vertex requirements, with corrections based on systematic differences in the vertex reconstruction efficiency between data and simulation.
A search for the production of a heavy B quark, having electric charge -1/3 and vector couplings to W, Z, and H bosons, is carried out using proton-proton collision data recorded at the CERN LHC by the CMS experiment, corresponding to an integrated luminosity of 19.7 inverse femtobarns. The B quark is assumed to be pair produced and to decay in one of three ways: to tW, bZ, or bH. The search is carried out in final states with one, two, and more than two charged leptons, as well as in fully hadronic final states. Each of the channels in the exclusive final-state topologies is designed to be sensitive to specific combinations of the B quark-antiquark pair decays. The observed event yields are found to be consistent with the standard model expectations in all the final states studied. A statistical combination of these results is performed and upper limits are set on the cross section of the strongly produced B quark-antiquark pairs as a function of the B quark mass. Lower limits on the B quark mass between 740 and 900 GeV are set at a 95% confidence level, depending on the values of the branching fractions of the B quark to tW, bZ, and bH. Overall, these limits are the most stringent to date.
Event yields for the electron + jets categories.
Event yields for the muon + jets categories.
Event yields for the same-sign dilepton e+e category.
A search for the quantum chromodynamics (QCD) critical point was performed by the STAR experiment at the Relativistic Heavy Ion Collider, using dynamical fluctuations of unlike particle pairs. Heavy-ion collisions were studied over a large range of collision energies with homogeneous acceptance and excellent particle identification, covering a significant range in the QCD phase diagram where a critical point may be located. Dynamical $K\pi$, $p\pi$, and $Kp$ fluctuations as measured by the STAR experiment in central 0-5\% Au+Au collisions from center-of-mass collision energies $\rm \sqrt{s_{NN}}$ = 7.7 to 200 GeV are presented. The observable $\rm \nu_{dyn}$ was used to quantify the magnitude of the dynamical fluctuations in event-by-event measurements of the $K\pi$, $p\pi$, and $Kp$ pairs. The energy dependences of these fluctuations from central 0-5\% Au+Au collisions all demonstrate a smooth evolution with collision energy.
$p\pi$, Kp, and $K\pi$ fluctuations as a function of collision energy, expressed as $v_{dyn,p\pi}$, $v_{dyn,Kp}$, and $v_{dyn,K\pi}$ respectively. Shown are data from central (0-5%) Au+Au collisions at energies from $\sqrt{s_{\rm NN}}$ = 7.7 to 200 GeV from the STAR experiment.
The STAR collaboration presents for the first time two-dimensional di-hadron correlations with identified leading hadrons in 200 GeV central Au+Au and minimum-bias d+Au collisions to explore hadronization mechanisms in the quark gluon plasma. The enhancement of the jet-like yield for leading pions in Au+Au data with respect to the d+Au reference and the absence of such an enhancement for leading non-pions (protons and kaons) are discussed within the context of a quark recombination scenario. The correlated yield at large angles, specifically in the \emph{ridge region}, is found to be significantly higher for leading non-pions than pions. The consistencies of the constituent quark scaling, azimuthal harmonic model and a mini-jet modification model description of the data are tested, providing further constraints on hadronization.
Two-dimensional $\Delta\phi$ vs. $\Delta\eta$ correlation functions for charged hadron triggers from minimum-bias d+Au data at 200 GeV. All trigger and associated charged hadrons are selected in the respective pT ranges 4 < $p_T^{trig}$ < 5 GeV/c and 1.5 < $p_T^{assoc}$ < 4 GeV/c.
Two-dimensional $\Delta\phi$ vs. $\Delta\eta$ correlation functions for charged hadron triggers from 0-10% most-central Au+Au data at 200 GeV. All trigger and associated charged hadrons are selected in the respective pT ranges 4 < $p_T^{trig}$ < 5 GeV/c and 1.5 < $p_T^{assoc}$ < 4 GeV/c.
Two-dimensional $\Delta\phi$ vs. $\Delta\eta$ correlation functions for non-pion triggers from minimum-bias d+Au data at 200 GeV. All trigger and associated charged hadrons are selected in the respective pT ranges 4 < $p_T^{trig}$ < 5 GeV/c and 1.5 < $p_T^{assoc}$ < 4 GeV/c.
A data-driven method was applied to measurements of Au+Au collisions at $\sqrt{s_{_{\rm NN}}} =$ 200 GeV made with the STAR detector at RHIC to isolate pseudorapidity distance $\Delta\eta$-dependent and $\Delta\eta$-independent correlations by using two- and four-particle azimuthal cumulant measurements. We identified a component of the correlation that is $\Delta\eta$-independent, which is likely dominated by anisotropic flow and flow fluctuations. It was also found to be independent of $\eta$ within the measured range of pseudorapidity $|\eta|<1$. The relative flow fluctuation was found to be $34\% \pm 2\% (stat.) \pm 3\% (sys.)$ for particles of transverse momentum $p_{T}$ less than $2$ GeV/$c$. The $\Delta\eta$-dependent part may be attributed to nonflow correlations, and is found to be $5\% \pm 2\% (sys.)$ relative to the flow of the measured second harmonic cumulant at $|\Delta\eta| > 0.7$.
The second harmonic two-particle cumulants for ($\eta_{\alpha}$, $\eta_{\beta}$ pairs for 20-30% central Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
The third harmonic two-particle cumulants for ($\eta_{\alpha}$, $\eta_{\beta}$ pairs for 20-30% central Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
The second harmonic four-particle cumulant for ($\eta_{\alpha}$, $\eta_{\alpha}$, $\eta_{\beta}$, $\eta_{\beta}$) quadruplets for 20-30% central Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
Event-by-event fluctuations of the ratio of inclusive charged to photon multiplicities at forward rapidity in Au+Au collision at $\sqrt{s_{NN}}$=200 GeV have been studied. Dominant contribution to such fluctuations is expected to come from correlated production of charged and neutral pions. We search for evidences of dynamical fluctuations of different physical origins. Observables constructed out of moments of multiplicities are used as measures of fluctuations. Mixed events and model calculations are used as baselines. Results are compared to the dynamical net-charge fluctuations measured in the same acceptance. A non-zero statistically significant signal of dynamical fluctuations is observed in excess to the model prediction when charged particles and photons are measured in the same acceptance. We find that, unlike dynamical net-charge fluctuation, charge-neutral fluctuation is not dominated by correlation due to particle decay. Results are compared to the expectations based on the generic production mechanism of pions due to isospin symmetry, for which no significant (<1%) deviation is observed.
Multiplicity distributions of raw charged particles and photons.
The $v_{dyn}$ and the three terms of $v_{dyn}$ vs $\sqrt{\langle N_{ch}\rangle \langle N_{\gamma}\rangle }$ for real events. $\omega_{ch}^{real}$ is plotted.
The $v_{dyn}$ and the three terms of $v_{dyn}$ vs $\sqrt{\langle N_{ch}\rangle \langle N_{\gamma}\rangle }$ for mixed events. $\omega_{ch}^{mixed}$ is plotted.
We present $\Lambda\Lambda$ correlation measurements in heavy-ion collisions for Au+Au collisions at $\sqrt{s_{NN}}= 200$ GeV using the STAR experiment at the Relativistic Heavy-Ion Collider (RHIC). The Lednick\'{y}-Lyuboshitz analytical model has been used to fit the data to obtain a source size, a scattering length and an effective range. Implications of the measurement of the $\Lambda\Lambda$ correlation function and interaction parameters for di-hyperon searches are discussed.
The invariant mass distribution for $\Lambda$ and $\bar{\Lambda}$ produced in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV, for 0-80% centrality. The $\Lambda$ and $\bar{\Lambda}$ candidates lying in the mass range 1.112 to 1.120 GeV/c^2 were selected for the correlation measurement.
The $\Lambda\Lambda$ and $\bar{\Lambda}\bar{\Lambda}$ correlation function in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV, for 0-80% centrality.
The combined $\Lambda\Lambda$ and $\bar{\Lambda}\bar{\Lambda}$ correlation function for 0-80% centrality Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
We present measurements of elliptic flow ($v_2$) of electrons from the decays of heavy-flavor hadrons ($e_{HF}$) by the STAR experiment. For Au+Au collisions at $\sqrt{s_{\rm NN}} = $ 200 GeV we report $v_2$, for transverse momentum ($p_T$) between 0.2 and 7 GeV/c using three methods: the event plane method ($v_{2}${EP}), two-particle correlations ($v_2${2}), and four-particle correlations ($v_2${4}). For Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 62.4 and 39 GeV we report $v_2${2} for $p_T< 2$ GeV/c. $v_2${2} and $v_2${4} are non-zero at low and intermediate $p_T$ at 200 GeV, and $v_2${2} is consistent with zero at low $p_T$ at other energies. The $v_2${2} at the two lower beam energies is systematically lower than at $\sqrt{s_{\rm NN}} = $ 200 GeV for $p_T < 1$ GeV/c. This difference may suggest that charm quarks interact less strongly with the surrounding nuclear matter at those two lower energies compared to $\sqrt{s_{\rm NN}} = 200$ GeV.
Signal-to-background (S/B) ratio as a function of transverse momentum, Au+Au 200 GeV, 0-60% central events with minimum bias trigger
Signal-to-background (S/B) ratio as a function of transverse momentum, Au+Au 200 GeV, 0-60% central events with with High Tower (high pT) trigger
Signal-to-background (S/B) ratio as a function of transverse momentum, Au+Au 39 GeV, 0-60% central events with minimum bias trigger