An analysis of the production ofKS0KS0 andK±Ks0π∓ by two quasi-real photons is presented. The cross section forγγ→K0\(\overline {K^0 } \), which is given for the γγ invariant mass range fromK\(\bar K\) threshold to 2.5 GeV, is dominated by thef′(1525) resonance and an enhancement near theK\(\bar K\) threshold. Upper limits on the product of the two-photon width times the branching ratio intoK\(\bar K\) pairs are given forΘ(1700),h(2030), and ξ(2220). For exclusive two-photon production ofK±Ks0π∓ no significant signal was observed. Upper limits are given on the cross section ofγγ→K+\(\overline {K^0 } \)π− orK−K0π+ between 1.4 and 3.2 GeV and on the product of the γγ width times the branching ratio into theK\(\bar K\)π final states for theηc(2980) and the ι(1440), yieldingΓ(γγ)→i(1440))·BR(i(1440)→K\(\bar K\)π<2.2 keV at 95% C.L.
Data read from graph.. Corrected for the angular distribution, which is assumed to be sin(theta)**4 for W > 1.14 GeV and isotropic in the first bin.
Data read from graph.
This paper presents the results of a study of the dominant neutral final states from π−p interactions. The data were obtained in an experiment performed at the Brookhaven National Laboratory Alternating Gradient Synchrotron, using a set of steel-plate optical spark chambers surrounding a liquid-hydrogen target. We present differential and total cross sections for the reactions (1) π−p→n+π0 and (2) π−p→n+η0(η0→2γ) and total cross sections for the reactions (3) π−p→n+kπ0 (k=2, 3, 4, and 5) and (4) π−p→all neutrals for eighteen values of beam momentum in the interval 1.3 to 4.0 GeV/c. The angular distributions for (1) and (2) have been analyzed in terms of expansions in Legendre polynomials, the coefficients for which are also given.
No description provided.
SIG = 4*PI*LEG(L=0).
FORWARD DIFFERENTIAL CROSS SECTION CALCULATED FROM LEGENDRE POLYNOMIAL COEFFICIENTS AND ERROR MATRICES.
None
No description provided.
No description provided.
No description provided.
K+p and K+d total cross sections were measured in the momentum range 0.57-1.16 GeV/c using a secondary, separated kaon beam of the Lawrence Berkeley Laboratory Bevatron and conventional transmission-counter techniques. No evidence was found for structure in the cross section of either reaction as previously indicated near 0.7 GeV/c.
No description provided.
The differential cross section for π±−p elastic scattering at 180° was measured from 0.572 to 1.628 GeVc using a double-arm scintillation-counter spectrometer with an angular acceptance θ* in the center-of-mass system defined by −1.00≤cosθ*≤−0.9992. The π+−p cross section exhibits a large dip at 0.737 GeVc and a broad peak centered near 1.31 GeVc. The π−−p cross section exhibits peaks at 0.69, 0.97, and 1.43 GeVc.
No description provided.
No description provided.
No description provided.
Results of a high-statistics study of π++p→ρ++p at 1.55-1.84 GeVc are consistent with dominance of π and ω exchange close to threshold. A pronounced dip in ρ00sdσdt at −t≃0.4 GeV2 may be attributed to pion exchange with strong absorption.
No description provided.
No description provided.
No description provided.
The total cross sections of π± on protons in the momentum interval from 0.40 to 0.90 GeV/c have been measured with high relative precision. In this interval the statistical error varies between 10 and 20 μb. No new structure is observed.
No description provided.
Total cross sections for π−p→ΛK0 have been measured using optical spark chambers from threshold to 1.13−GeVc beam momentum in 19−MeVc intervals, but with a 1−MeVc resolution in the regions of the ΛK and ΣK thresholds. The behavior near ΛK threshold indicates a significant s-wave contribution, but this experiment is unable to resolve any cusplike behavior in the region of the ΣK thresholds. The cross section shows a broad peak in the vicinity of 1.05−GeVc beam momentum.
No description provided.
Photoproduction cross sections of charged pi mesons from hydrogen and deuterium have been measured as a function of meson angle at gamma-ray energies of 200, 235, and 265 Mev. The angular range extends from 30° to 180° in the laboratory system. Absolute cross sections have been determined. A least-squares fit of the measured cross sections has been made to the expression A+Bcosθ+Csin2θ, which assumes only S and P wave scattering. The coefficients so determined are qualitatively consistent with electric and magnetic dipole absorption together with the assumption of a resonant state of angular momentum 32 and of energy close to 300 Mev. Comparison with neutral meson production indicates some direct charged meson production in the P state.
No description provided.
No description provided.