Measurement of high momentum transfer pi- p ---> pi0 n at 5.9 gev/c

Brockett, W.S. ; Corlew, G.T. ; Frisken, William R. ; et al.
Phys.Lett.B 51 (1974) 390-392, 1974.
Inspire Record 95079 DOI 10.17182/hepdata.27932

The differential cross section for π − p → π 0 n has been measured in the t range 1.8 ⩽ | t | ⩽ 8.2 (GeV/ c ) 2 by a counter-spark chamber experiment detecting the neutron and both π 0 decay photons. A broad minimum was found, centered at | t | = 5.2 (GeV/ c ) 2 .

1 data table

No description provided.


Dip structures in pi+ p ---> rho+ p at 1.55-1.84 gev/c

Williamson, Y. ; Fung, S.Y. ; Kernan, A. ; et al.
Phys.Rev.Lett. 29 (1972) 1353-1356, 1972.
Inspire Record 75422 DOI 10.17182/hepdata.21440

Results of a high-statistics study of π++p→ρ++p at 1.55-1.84 GeVc are consistent with dominance of π and ω exchange close to threshold. A pronounced dip in ρ00sdσdt at −t≃0.4 GeV2 may be attributed to pion exchange with strong absorption.

9 data tables

No description provided.

No description provided.

No description provided.

More…

Study of the two-charged-particle final states of 3.9-gev/c pi+- p interactions including a longitudinal-momentum analysis of the one-pion- production channels

Bastien, P.L. ; Carmel, Z. ; Dao, F.T. ; et al.
Phys.Rev.D 3 (1971) 2047-2064, 1971.
Inspire Record 68000 DOI 10.17182/hepdata.23677

We have analyzed the two-prong final states in π+p interactions at 3.9 GeVc. Our result for elastic scattering is σ (elastic) = 6.50±0.1 mb (statistical error only). We find the elastic slope to be 6.61±0.14 (GeVc)−2. We find the elastic forward cross section to be 40.0±1.4 mb(GeVc)2. We have applied a longitudinal-momentum analysis to the one-pion-production channel. We find the cross section for the reaction π++p→π++π0+p to be 2.30±0.06 mb and that for π++p→π++π++n to be 1.45±0.05 mb. For resonance-production cross sections in these channels we find Δ(1236)=0.60±0.07 mb, ρ(760)=0.86±0.06 mb, and diffraction dissociation = 1.69±0.11 mb. We find that we can satisfactorily fit all distributions in the one-pion-production channel without assuming any phase-space production. In the missing-mass channel we observe dominant Δ++(1236) production plus evidence for A2+ production.

15 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the reaction pi- p ---> pi0 n at large momentum transfers

Brockett, W.S. ; Corlew, G.T. ; Frisken, William R. ; et al.
Phys.Rev.Lett. 26 (1971) 527-530, 1971.
Inspire Record 69039 DOI 10.17182/hepdata.21508

We present results of an experiment to measure the differential cross section of the reaction π−p→π0n between the forward and backward peaks. The measurements were made at incident π− momenta of 3.67 and 4.83 GeVc. The t range 1.7<~|t|<~4.9 (GeVc)2 was covered at the lower momentum and 1.8<~|t|<~7 (GeVc)2 at the higher momentum. At the lower momentum the cross section is essentially constant between |t|=2.4 and 4.8 (GeVc)2 while at the higher momentum the angular distribution exhibits a broad minimum centered at |t|=4.4 (GeVc)2.

2 data tables

No description provided.

No description provided.


Total cross-sections of protons, anti-protons, and pi and K mesons on hydrogen and deuterium in the momentum range 6-GeV/c to 22-GeV/c

Galbraith, W. ; Jenkins, E.W. ; Kycia, T.F. ; et al.
Phys.Rev. 138 (1965) B913-B920, 1965.
Inspire Record 48756 DOI 10.17182/hepdata.5477

The total cross sections σT of p, p¯, π±, and K± on hydrogen and deuterium have been measured between 6 and 22 GeVc at intervals of 2GeVc to an accuracy greater than previously reported. The method utilized was a conventional good-geometry transmission experiment with scintillation counters subtending various solid angles at targets of liquid H2 and D2. With the increase in statistical accuracy of the data, it was found that a previously adopted procedure of linearly extrapolating to zero solid angle the partial cross sections measured at finite solid angles was not a sufficiently accurate procedure from which to deduce σT. The particle-neutron cross sections are derived by applying the Glauber screening correction to the difference between the particle-deuteron and particle-proton cross sections. The cross sections σT(π+d) and σT(π−d) are equal at all measured momenta, which confirms the validity of charge symmetry up to 20GeVc. Results are presented showing the variation of cross sections with momentum; evidence is presented for a small but significant decrease in σT(pp) [and σT(pn)] in the momentum region above 12GeVc.

7 data tables

No description provided.

No description provided.

No description provided.

More…