Measurements of the pp$\to$ZZ production cross section and the Z$\to 4\ell$ branching fraction, and constraints on anomalous triple gauge couplings at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 78 (2018) 165, 2018.
Inspire Record 1625296 DOI 10.17182/hepdata.80152

Four-lepton production in proton-proton collisions, $\mathrm{pp}\to (\mathrm{Z}/ \gamma^*)(\mathrm{Z}/\gamma^*) \to 4\ell$, where $\ell = \mathrm{e}$ or $\mu$, is studied at a center-of-mass energy of 13 TeV with the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The ZZ production cross section, $\sigma(\mathrm{pp} \to \mathrm{Z}\mathrm{Z}) = 17.2 \pm 0.5\text{ (stat) }\pm 0.7\text{ (syst) }\pm 0.4(\mathrm{theo}) \pm 0.4\text{ (lumi)}$ pb, measured using events with two opposite-sign, same-flavor lepton pairs produced in the mass region $60 < m_{\ell^+\ell^-} < $120 GeV, is consistent with standard model predictions. Differential cross sections are measured and are well described by the theoretical predictions. The Z boson branching fraction to four leptons is measured to be $\mathcal{B}(\mathrm{Z}\to 4\ell) = 4.8 \pm 0.2\text{ (stat) }\pm 0.2\text{ (syst) } \pm 0.1\text{ (theo) }\pm 0.1\text{ (lumi) }\times 10^{-6}$ for events with a four-lepton invariant mass in the range 80 $ < m_{4\ell} < $ 100 GeV and a dilepton mass $m_{\ell\ell} > $4 GeV for all opposite-sign, same-flavor lepton pairs. The results agree with standard model predictions. The invariant mass distribution of the four-lepton system is used to set limits on anomalous ZZZ and ZZ$\gamma$ couplings at 95% confidence level: $-0.0012 < f_4^\mathrm{Z} < 0.0010$, $-0.0010 < f_5^\mathrm{Z} < 0.0013$, $-0.0012 < f_4^{\gamma} < 0.0013$, $-0.0012 < f_5^{\gamma} < 0.0013$.

0 data tables match query

Search for heavy resonances decaying to a pair of Lorentz-boosted Higgs bosons in final states with leptons and a bottom quark pair at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 05 (2022) 005, 2022.
Inspire Record 1984855 DOI 10.17182/hepdata.115024

A search for new heavy resonances decaying to a pair of Higgs bosons (HH) in proton-proton collisions at a center-of-mass energy of 13 TeV is presented. Data were collected with the CMS detector at the LHC in 2016-2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. Resonances with a mass between 0.8 and 4.5 TeV are considered using events in which one Higgs boson decays into a bottom quark pair and the other into final states with either one or two charged leptons. Specifically, the single-lepton decay channel HH $\to$ $\mathrm{b\bar{b}}$WW$^*$ $\to$ $\mathrm{b\bar{b}}\ell\nu q\bar{q}'$ and the dilepton decay channels HH $\to$ $\mathrm{b\bar{b}}$WW$^*$ $\to$ $\mathrm{b\bar{b}}\ell\nu \ell\nu$ and HH $\to$ $\mathrm{b\bar{b}}\tau\tau$ $\to$ $\mathrm{b\bar{b}}\ell\nu\nu \ell\nu\nu$ are examined, where $\ell$ in the final state corresponds to an electron or muon. The signal is extracted using a two-dimensional maximum likelihood fit of the H $\to$ $\mathrm{b\bar{b}}$ jet mass and HH invariant mass distributions. No significant excess above the standard model expectation is observed in data. Model-independent exclusion limits are placed on the product of the cross section and branching fraction for narrow spin-0 and spin-2 massive bosons decaying to HH. The results are also interpreted in the context of radion and bulk graviton production in models with a warped extra spatial dimension. The results provide the most stringent limits to date for X $\to$ HH signatures with final-state leptons and at some masses provide the most sensitive limits of all X $\to$ HH searches.

0 data tables match query

Version 2
Measurement of the Higgs boson production rate in association with top quarks in final states with electrons, muons, and hadronically decaying tau leptons at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 81 (2021) 378, 2021.
Inspire Record 1828962 DOI 10.17182/hepdata.100163

The rate for Higgs (H) bosons production in association with either one (tH) or two ($\mathrm{t\bar{t}}$H) top quarks is measured in final states containing multiple electrons, muons, or tau leptons decaying to hadrons and a neutrino, using proton-proton collisions recorded at a center-of-mass energy of 13 TeV by the CMS experiment. The analyzed data correspond to an integrated luminosity of 137 fb$^{-1}$. The analysis is aimed at events that contain H $\to$ WW, H $\to$$\tau\tau$, or H $\to$ ZZ decays and each of the top quark(s) decays either to lepton+jets or all-jet channels. Sensitivity to signal is maximized by including ten signatures in the analysis, depending on the lepton multiplicity. The separation among the tH, the $\mathrm{t\bar{t}}$H, and the backgrounds is enhanced through machine-learning techniques and matrix-element methods. The measured production rates for the $\mathrm{t\bar{t}}$H and tH signals correspond to 0.92 $\pm$ 0.19 (stat) $^{+0.17}_{-0.13}$ (syst) and 5.7 $\pm$ 2.7 (stat) $\pm$ 3.0 (syst) of their respective standard model (SM) expectations. The corresponding observed (expected) significance amounts to 4.7 (5.2) standard deviations for $\mathrm{t\bar{t}}$H, and to 1.4 (0.3) for tH production. Assuming that the Higgs boson coupling to the tau lepton is equal in strength to its expectation in the SM, the coupling $y_{\mathrm{t}}$ of the Higgs boson to the top quark divided by its SM expectation, $\kappa_\mathrm{t}$ = $y_\mathrm{t} / y_\mathrm{t}^\mathrm{SM}$, is constrained to be within $-$0.9 $\lt$$\kappa_\mathrm{t}$$\lt$$-$0.7 or 0.7 $\lt$$\kappa_\mathrm{t}$$\lt$ 1.1, at 95% confidence level. This result is the most sensitive measurement of the $\mathrm{t\bar{t}}$H production rate to date.

0 data tables match query

Version 2
Interpreting Reactor Antineutrino Anomalies with STEREO data

The STEREO collaboration Almazán, H. ; Bernard, L. ; Blanchet, A. ; et al.
Nature 613 (2023) 257-261, 2023.
Inspire Record 2165649 DOI 10.17182/hepdata.132368

Anomalies in past neutrino measurements have led to the discovery that these particles have non-zero mass and oscillate between their three flavors when they propagate. In the 2010's, similar anomalies observed in the antineutrino spectra emitted by nuclear reactors have triggered the hypothesis of the existence of a supplementary neutrino state that would be sterile i.e. not interacting via the weak interaction. The STEREO experiment was designed to study this scientific case that would potentially extend the Standard Model of Particle Physics. Here we present a complete study based on our full set of data with significantly improved sensitivity. Installed at the ILL (Institut Laue Langevin) research reactor, STEREO has accurately measured the antineutrino energy spectrum associated to the fission of 235U. This measurement confirms the anomalies whereas, thanks to the segmentation of the STEREO detector and its very short mean distance to the core (10~m), the same data reject the hypothesis of a light sterile neutrino. Such a direct measurement of the antineutrino energy spectrum suggests instead that biases in the nuclear experimental data used for the predictions are at the origin of the anomalies. Our result supports the neutrino content of the Standard Model and establishes a new reference for the 235U antineutrino energy spectrum. We anticipate that this result will allow to progress towards finer tests of the fundamental properties of neutrinos but also to benchmark models and nuclear data of interest for reactor physics and for observations of astrophysical or geo-neutrinos.

5 data tables match query

STEREO IBD Spectrum for phase-II and phase-III. The spectra are given in nu/day and normalized to reactor power in cm2/fission/MeV with 22 250keV-wide measured-energy bins, ranging from 1.625MeV (lower edge of lowest bin) to 7.125 MeV (upper edge of highest bin). The normalized rates (cm2/fission/MeV) are split between U5 and non-U5 components (Aluminium and Off-Equilibrium corrections).

STEREO Global Covariance Matrix for phase-II and phase-III. The matrix is given as a 44x44 matrix, with 44 bins for phase-II (bins 1-22) and phase-III (bins 23-44) corresponding to the prompt spectra with 22 250-keV bins, ranging from 1.625 to 7.125 MeV; it is expressed in (cm2/fission/MeV)².

STEREO detection and selection efficiency for Phase-II and III. The efficiency is given in 22 antineutrino energy bins, bins 2-21 corresponding to the binning of the unfolded spectrum ranging 2.375-7.875 MeV, bin 1 integrates from 1.875 MeV to 2.375 MeV and bin 22 integrates from 7.875 MeV to 8.125 MeV.

More…

First antineutrino energy spectrum from $^{235}$U fissions with the STEREO detector at ILL

The STEREO collaboration Almazán, H. ; Bernard, L. ; Blanchet, A. ; et al.
J.Phys.G 48 (2021) 075107, 2021.
Inspire Record 1821378 DOI 10.17182/hepdata.99805

This article reports the measurement of the $^{235}$U-induced antineutrino spectrum shape by the STEREO experiment. 43'000 antineutrinos have been detected at about 10 m from the highly enriched core of the ILL reactor during 118 full days equivalent at nominal power. The measured inverse beta decay spectrum is unfolded to provide a pure $^{235}$U spectrum in antineutrino energy. A careful study of the unfolding procedure, including a cross-validation by an independent framework, has shown that no major biases are introduced by the method. A significant local distortion is found with respect to predictions around $E_\nu \simeq 5.3$ MeV. A gaussian fit of this local excess leads to an amplitude of $A = 12.1 \pm 3.4\%$ (3.5$\sigma$).

1 data table match query

STEREO Detector Response Matrix, sampled using STEREO's simulation using neutrinos with energy distributed according to HFR's IBD yield prediction. The matrix is given as a 200x22 matrix, with 200 50keV-wide $E_\nu$ bins (centers ranging from 0.05 to 10 MeV) and 22 250keV-wide measured-energy bins corresponding to measured data. The matrix is not normalized; desired normalization (e.g., $\sum_j R_{ij} = e_i$ where $e_i$ is the efficiency) has to be applied before the matrix can be used.