Date

PRISM Plot Analysis of the Reaction pi+ p --> p pi+ pi+ pi- at 16-GeV/c

The AACHEN-BERLIN-BONN-CERN-CRACOW-HEIDELBERG-WARSAW collaboration Deutschmann, M. ; Kirk, H. ; Sixel, P. ; et al.
Nucl.Phys.B 99 (1975) 397-419, 1975.
Inspire Record 104134 DOI 10.17182/hepdata.35967

We have analysed the reaction π + p → pπ + π + π − at 16 GeV/c by means of the prism plot analysis (PPA) as proposed by Pless et al. We have separated ten reaction channels contributing to the final state pπ + π + π − and present the results in terms of partial and differential cross sections, invariant mass and decay angular distributions. We show that the PPA is a self-controlling method which is demonstrated by the emergence of a broad (3π) + enhancement around 1800 MeV decaying into ρ 0 π + .

1 data table match query

PARTIAL CROSS SECTIONS FOR THE (P PI+ PI+ PI-) FINAL STATE.


THE STUDY OF DIFFRACTIVE DISSOCIATION IN THE REACTION anti-p p ---> anti-p p pi+ pi- AT 22.4-GeV/c

The Dubna-Alma Ata-Helsinki-Prague collaboration Batyunya, B.V. ; Boguslavsky, I.V. ; Dashian, N.B. ; et al.
JINR-E1-82-415, 1982.
Inspire Record 179201 DOI 10.17182/hepdata.9875

None

5 data tables match query

No description provided.

No description provided.

No description provided.

More…

Cross-Sections for Diffractive p p --> p x from 100-GeV to 400-GeV

Schamberger, R.Dean ; Lee-Franzini, Juliet ; Mccarthy, R. ; et al.
Phys.Rev.Lett. 34 (1975) 1121-1124, 1975.
Inspire Record 102549 DOI 10.17182/hepdata.21249

We have measured the cross section for p+p→p+X for MX2 up to a constant fraction of s. We observe no rise for 130

1 data table match query

No description provided.


Measurement of the diffractive structure function F2(D(4) ) at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 1 (1998) 81-96, 1998.
Inspire Record 448663 DOI 10.17182/hepdata.44431

This paper presents the first analysis of diffractive photon dissociation events in deep inelastic positron-proton scattering at HERA in which the proton in the final state is detected and its momentum measured. The events are selected by requiring a scattered proton in the ZEUS leading proton spectrometer (LPS) with $\xl>0.97$, where $\xl$ is the fraction of the incoming proton beam momentum carried by the scattered proton. The use of the LPS significantly reduces the contamination from events with diffractive dissociation of the proton into low mass states and allows a direct measurement of $t$, the square of the four-momentum exchanged at the proton vertex. The dependence of the cross section on $t$ is measured in the interval $0.073<|t|<0.4$~$\gevtwo$ and is found to be described by an exponential shape with the slope parameter $b=\tslopeerr$. The diffractive structure function $\ftwodfour$ is presented as a function of $\xpom \simeq 1-\xl$ and $\beta$, the momentum fraction of the struck quark with respect to $\xpom$, and averaged over the $t$ interval $0.073<|t|<\ftwodfourtmax$~$\gevtwo$ and the photon virtuality range $5

4 data tables match query

The measured distribution of T, the squared momentum transfer to the virtual pluton.

Slope of the T distribution.

The structure function F2(NAME=D4).

More…

Double diffractive cross-section measurement in the forward region at LHC

The TOTEM collaboration Antchev, G. ; Aspell, P. ; Atanassov, I. ; et al.
Phys.Rev.Lett. 111 (2013) 262001, 2013.
Inspire Record 1251897 DOI 10.17182/hepdata.64889

The first double diffractive cross-section measurement in the very forward region has been carried out by the TOTEM experiment at the LHC with center-of-mass energy of sqrt(s)=7 TeV. By utilizing the very forward TOTEM tracking detectors T1 and T2, which extend up to |eta|=6.5, a clean sample of double diffractive pp events was extracted. From these events, we measured the cross-section sigma_DD =(116 +- 25) mub for events where both diffractive systems have 4.7 <|eta|_min < 6.5 .

2 data tables match query

Visible double diffractive cross-section measurements in the forward region. See paper for details of the nomenclature.

True eta_min corrected double diffractive cross-section measurements in the forward region. See paper for details of the nomenclature.


Real part of the pn scattering amplitude in the energy interval 2 - 10 GeV

Zolin, L.S. ; Kirillova, L.F. ; Ch'ing-ch'iang, Lu ; et al.
JETP Lett. 3 (1966) 8-12, 1966.
Inspire Record 1393135 DOI 10.17182/hepdata.39925

None

1 data table match query

Measurement of the diffractive cross-section in deep inelastic scattering using ZEUS 1994 data

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 6 (1999) 43-66, 1999.
Inspire Record 473108 DOI 10.17182/hepdata.44224

The DIS diffractive cross section, $d\sigma^{diff}_{\gamma^* p \to XN}/dM_X$, has been measured in the mass range $M_X < 15$ GeV for $\gamma^*p$ c.m. energies $60 < W < 200$ GeV and photon virtualities $Q^2 = 7$ to 140 GeV$^2$. For fixed $Q^2$ and $M_X$, the diffractive cross section rises rapidly with $W$, $d\sigma^{diff}_{\gamma^*p \to XN}(M_X,W,Q^2)/dM_X \propto W^{a^{diff}}$ with $a^{diff} = 0.507 \pm 0.034 (stat)^{+0.155}_{-0.046}(syst)$ corresponding to a $t$-averaged pomeron trajectory of $\bar{\alphapom} = 1.127 \pm 0.009 (stat)^{+0.039}_{-0.012} (syst)$ which is larger than $\bar{\alphapom}$ observed in hadron-hadron scattering. The $W$ dependence of the diffractive cross section is found to be the same as that of the total cross section for scattering of virtual photons on protons. The data are consistent with the assumption that the diffractive structure function $F^{D(3)}_2$ factorizes according to $\xpom F^{D(3)}_2 (\xpom,\beta,Q^2) = (x_0/ \xpom)^n F^{D(2)}_2(\beta,Q^2)$. They are also consistent with QCD based models which incorporate factorization breaking. The rise of $\xpom F^{D(3)}_2$ with decreasing $\xpom$ and the weak dependence of $F^{D(2)}_2$ on $Q^2$ suggest a substantial contribution from partonic interactions.

24 data tables match query

Cross section for diffractive scattering.

Cross section for diffractive scattering.

Cross section for diffracitve scattering.

More…

Diffraction dissociation in anti-p p collisions at s**(1/2) = 1.8-TeV

The E710 collaboration Amos, Norman A. ; Avila, C. ; Baker, W.F. ; et al.
Phys.Lett.B 301 (1993) 313-316, 1993.
Inspire Record 342944 DOI 10.17182/hepdata.28955

We have studied single diffraction dissociation ( p p→ p X ) in proton-antiproton collisions at √ s =1.8TeV, covering the ranges 3⪅ M X ⪅200 GeV and 0.05⪅| t |⪅0.11 (GeV/ c ) 2 . Parameterizing the production to be of the form dσ ( d t d M 2 X ) = (M 2 X ) −α exp (bt) , we obtain α = 1.13±0.07 and b = 10.5±1.8(GeV/ c ) −2 . The total single diffraction dissociation cross section is 2 σ SD =8.1±1.7 mb. Comparisons are made to previous lower energy data, and to an earlier measurement by us at the same energy.

1 data table match query

Total single diffraction cross section.


Angular dependence of the beam and target analyzing powers a(oono) and A(ooon) in n p elastic scattering between 0.477-GeV and 0.940-GeV

Ball, J. ; Chesny, P. ; Combet, M. ; et al.
Nucl.Phys.A 559 (1993) 477-488, 1993.
Inspire Record 33734 DOI 10.17182/hepdata.36610

We present a total of 273 independent data points of the analyzing powers A oono (nP) and A ooon (nP) in a large angular interval at four energies between 0.477 and 0.940 GeV. The SATURNE II polarized beam of free neutrons obtained from the break-up of polarized deuterons was scattered on the polarized Saclay frozen-spin proton target. Part of the data was obtained with a CH 2 target. A comparison of the two measured observables allows one to determine the polarization of the neutron beam. The present results provide an important contribution to any future theoretical or phenomenological analysis.

8 data tables match query

No description provided.

No description provided.

Data from 97.7 to 123.4 degrees are combined beam and target analyzing powers.

More…

Angular dependence of analyzing power in n p elastic scattering between 0.312-GeV and 1.1-GeV

Ball, J. ; Chesny, P. ; Combet, M. ; et al.
Nucl.Phys.A 559 (1993) 489-510, 1993.
Inspire Record 341321 DOI 10.17182/hepdata.36590

We present a total of 427 np analyzing power data points in a large angular interval at 12 energies between 0.312 and 1.10 GeV. The SATURNE II polarized beam of free monochromatic neutrons was scattered either on the Saclay frozen-spin polarized proton target or on CH 2 and C targets. Present results are compared with existing elastic and quasieleastic data.

18 data tables match query

Results of the analyzing power for n p scattering at 0.312 GeV. The CH2 target was used.

Results of the analyzing power for n p scattering at 0.363 GeV. The CH2 target was used.

Results of the analyzing power for n p scattering at 0.800 GeV.

More…