The reaction e + e − → τ + τ − has been measured using the high resolution spectrometer at PEP. The angular distribution shows a forward-backward asymmetry of −(6.1±2.3±0.5)%, corresponding to an axial-vector coupling if g a τ g a e = 0.28 ±0.11± 0.03, in good agreement with the standard model of electroweak interactions. The measured cross section yields ifR ττ = 1.10± 0.03±0.04, consistent with QED and giving QED cutoff parameters of Λ + >92 GeV and Λ − >246 GeV at 95% C.L.
Comparison of total tau pair cross section with O(alpha**3) QED prediction.
Corrected for acceptance backgraound, and O(alpha**3) radiative effects.
Forward-backward asymmetry based on fit to angular distributions.
The masses, total widths, and leptonic widths of three triplet s-wave bb¯ states ϒ(4S), ϒ(5S), and ϒ(6S) are determined from measurements of the e+e− annihilation cross section into hadrons for 10.55<W<11.25 GeV. The resonances are identified from potential model results and their properties are obtained with the help of a simplified coupled-channels calculation. We find M(4S)=10.577 GeV, Γ(4S)=25 MeV, Γee(4S)=0.28 keV; M(5S)=10.845 GeV, Γ(5S)=110 MeV, Γee(5S)=0.37 keV; M(6S)=11.02 GeV, Γ(6S)=90 MeV, Γee(6S)=0.16 keV.
VISIBLE CROSS SECTION INTO HADRONS.
The charged-particle multiplicities of hadronic events deriving from produced bottom or charm quarks have been measured in the Mark II detector at PEP in e+e− annihilation at 29GeV. For events containing one semileptonic and one hadronic weak decay, we find multiplicities of 15.2±0.5±0.7 for bottom and 13.0±0.5±0.8 for charm. The corresponding multiplicities of charged particles accompanying the pair of heavy hadrons are 5.2±0.5±0.9 for bottom, and 8.1±0.5±0.9 for charm.
.
.
.
We have measured the cross sections for e + e − → e + e − , e + e − → μ + μ − , e + e − → γγ and e + e − → hadrons in an energy scan at center of mass energies between 39.79 and 46.72 GeV in 30 MeV steps. New spinless bosons, whose existence has been postulated as a possible means to explain the anomalously large radiative width of the Z 0 found at the CERN SPS p p collider, are ruled out in the scan region. The data are used to set limits on the couplings to lepton, photon and quark pairs of bosons with masses above 46.72 GeV.
SIG(C=SM) is the Standard Model predicted cross section.
We have measured the K0+K¯ 0 inclusive cross section in e+e− annihilation at 29 GeV with the Mark II detector SLAC PEP. We find 1.27±0.03±0.15 K0+K¯ 0 per hadronic event. We have also used time-of-flight particle identification to measure the K± rate over the momentum range 300–900 MeV/c.
Extrapolated to full momentum range by Monte-Carlo.
Statistical errors only.
No description provided.
A high-statistics measurement is presented of the cross section for the process e+e−→τ+τ− at s=29 GeV from the MAC detector at PEP. A fit to the angular distribution of our sample of 10 153 events with |cosθ|<0.9 gives an asymmetry Aττ=−0.055±0.012±0.005 from which we find the product of electron and tau axial-vector weak neutral couplings gAegAτ=0.22±0.05.
Data fully corrected up to O(ALPHA**3) radiative effects. Data requested from authors.
Data extrapolated to full acceptance.
No description provided.
Bose-Einstein correlations between like-sign pions have been investigated in e+e− annihilation at √s =29 GeV using the Time Projection Chamber detector at the SLAC e+e− storage ring PEP. The production rate of like-sign pion pairs with small relative momentum is found to be increased by more than 50% over the rate expected for uncorrelated production of pions. From the correlation length, a typical source radius of 0.65 fm is derived. Data are consistent with a spherical shape of the pion source. No dependence of radius or correlation strength on the event multiplicity is observed.
No description provided.
Inclusive production cross sections for photons and π0's ine+e− annihilation at a center of mass energy of 29 GeV have been measured. The π0 production spectrum agrees with a corresponding measurement for π±. The ratio of the π0 inclusive rate to the average for π± is 0.92±0.14. The fractions of the total energy carried by photons and π0's are 0.244±0.016 and 0.217±0.033, respectively. The fraction of total energy carried by all stable hadrons, prompt leptons and photons is determined to be 0.938±0.045, leaving 0.062±0.045 for neutrinos.
No description provided.
No description provided.
We report a high-precision measurement of the ratio R of the total cross section for e+e−→hadrons to that for e+e−→μ+μ−, at a center-of-mass energy of 29.0 GeV using the MAC detector. The result is R=3.96±0.09. This value of R is used to determine a value of the strong coupling constant αs of 0.23±0.06, nearly independent of fragmentation models. Two different analysis methods having quite different event-selection criteria have been used and the results are in agreement. Particular attention has been given to the study of systematic errors. New higher-order QED calculations are used for the luminosity determination and the acceptance for hadrons.
No description provided.
No description provided.
We have studied inclusive D*± production using the DELCO detector at PEP. Our technique involved kaon identification in the momentum range above 3.2 GeV/c using a threshold gas Čerenkov counter. This leads to a model-independent upper limit on D0−D¯0 mixing of 8.1% (90% confidence level). We also have measured the charm fragmentation function, which peaks at x≡PD*(Ebeam2−MD*2)12 of 0.56±0.06(stat.), and the total cross section for D* production, σ(D*±)=0.140±0.021(stat.)±0.032(syst.) nb (x>0.3, with radiative correction).
No description provided.
SYSTEMATIC ERROR DOES NOT INCLUDE THE UNCERTAINTY ON THE BRANCHING RATIOS USED.