Date

Measurement of the associated gamma + muon +- production cross-section in p anti-p collisions at S**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amendolia, S.R. ; et al.
Phys.Rev.D 60 (1999) 092003, 1999.
Inspire Record 494764 DOI 10.17182/hepdata.42121

We present the first measurement of associated direct photon + muon production in hadronic collisions, from a sample of 1.8 TeV $p \bar p$ collisions recorded with the Collider Detector at Fermilab. Quantum chromodynamics (QCD) predicts that these events are primarily from the Compton scattering process $cg \to c\gamma$, with the final state charm quark producing a muon. Hence this measurement is sensitive to the charm quark content of the proton. The measured cross section of $29\pm 9 pb^{-1}$ is compared to a leading-order QCD parton shower model as well as a next-to-leading-order QCD calculation.

1 data table match query

The statistical and systematic errors are added in quadrature.


A Precision measurement of the prompt photon cross-section in p anti-p collisions at S**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amidei, D. ; et al.
Phys.Rev.Lett. 73 (1994) 2662-2666, 1994.
Inspire Record 375582 DOI 10.17182/hepdata.19680

A prompt photon cross section measurement from the Collider Detector at Fermilab experiment is presented. Detector and trigger upgrades, as well as 6 times the integrated luminosity compared with our previous publication, have contributed to a much more precise measurement and extended PT range. As before, QCD calculations agree qualitatively with the measured cross section, but the data has a steeper slope than the calculations.

1 data table match query

Note that the sytematic uncertainties are approximately 100 pct correlated bin to bin.


Measurements of charm fragmentation into D/s*+ and D/s+ in e+ e- annihilations at s**(1/2) = 10.5-GeV.

The CLEO collaboration Briere, Roy A. ; Behrens, B.H. ; Ford, William T. ; et al.
Phys.Rev.D 62 (2000) 072003, 2000.
Inspire Record 526554 DOI 10.17182/hepdata.22227

A study of charm fragmentation into $D_s^{*+}$ and $D_s^+$ in $e^+e^-$ annihilations at $\sqrt{s}$=10.5 GeV is presented. This study using $4.72 \pm 0.05$ fb$^{-1}$ of CLEO II data reports measurements of the cross-sections $\sigma(D_s^{*+})$ and $\sigma(D_s^+)$ in momentum regions above $x=0.44$, where $x$ is the $D_s$ momentum divided by the maximum kinematically allowed $D_s$ momentum. The $D_s$ vector to vector plus pseudoscalar production ratio is measured to be $P_V(x(D_s^+)>0.44)=0.44\pm0.04$

4 data tables match query

D/S*+ cross sections in regions of X(D/S*+). BR1 = BR(D/S*+ --> D/S+ GAMMA) * BR(D/S+ --> PHI PI+) * BR(PHI --> K+ K-).

D/S+ cross sections in regions of X(D/S+). BR2 = BR(D/S+ --> PHI PI+) * BR(PHI --> K+ K-).

D/S*+ cross sections in regions of X/D/S+. In effect this is the secondary D/S+ cross section. BR2 = BR(D/S+ --> PHI PI+) * BR(PHI --> K+ K-).

More…

Measurement of the dijet mass distribution in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M. ; Amidei, D. ; et al.
Phys.Rev.D 48 (1993) 998-1008, 1993.
Inspire Record 353889 DOI 10.17182/hepdata.22573

The dijet invariant mass distribution has been measured in the region between 120 and 1000 GeV/c2, in 1.8-TeV pp¯ collisions. The data sample was collected with the Collider Detector at Fermilab (CDF). Data are compared to leading order (LO) and next-to-leading order (NLO) QCD calculations using two different clustering cone radii R in the jet definition. A quantitative test shows good agreement of data with the LO and NLO QCD predictions for a cone of R=1. The test using a cone of R=0.7 shows less agreement. The NLO calculation shows an improvement compared to LO in reproducing the shape of the spectrum for both radii, and approximately predicts the cone size dependence of the cross section.

2 data tables match query

Observed cross section using R = 1.0. The second systematic error is the theoretical uncertainty and includes only the effect of the out-of-cone losses, the underlying event energy, and the contribution of multi-jet events.

Observed cross section using R = 0.7. The second systematic error is the theoretical uncertainty and includes only the effect of the out-of-cone losses, the underlying event energy, and the contribution of multi-jet events.


A Prompt photon cross-section measurement in anti-p p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M. ; Amidei, D. ; et al.
Phys.Rev.D 48 (1993) 2998-3025, 1993.
Inspire Record 353026 DOI 10.17182/hepdata.22677

The first prompt photon measurement from the CDF experiment at the Fermilab pp¯ Collider is presented. Two independent methods are used to measure the cross section: one for high transverse momentum (PT) and one for lower PT. Comparisons to various theoretical calculations are shown. The cross section agrees qualitatively with QCD calculations but has a steeper slope at low PT.

4 data tables match query

Cross section using profile method and an isolation cut of 2 GeV in a cone around the photon. There is an additional 27 pct systematic uncertainty in addition to the PT dependent systematic errors shown in the table.

Cross section using conversion method and an isolation cut of 2 GeV in a cone around the photon. There is an additional +32,-46 pct systematic uncertainty in addition to the PT dependent systematic errors shown in the table.

Cross section using profile method and an isolation cut of 15 pct of the photon PT in a cone around the photon. There is an additional 29 pct systematic uncertainty in addition to the PT dependent systematic errors shown in the table.

More…

Observation of an excited charmed baryon decaying into Xi(c)0 pi+

The CLEO collaboration Gibbons, L. ; Johnson, S.D. ; Kwon, Y. ; et al.
Phys.Rev.Lett. 77 (1996) 810-813, 1996.
Inspire Record 416471 DOI 10.17182/hepdata.47237

Using data recorded by the CLEO II detector at the Cornell Electron Storage Ring, we report the first observation of an excited charmed baryon decaying into Ξc0π+. The state has mass difference M(Ξc0π+)−M(Ξc0) of 174.3±0.5±1.0MeV/c2, and a width of <3.1MeV/c2 (90% confidence level limit). We identify the new state as the Ξc*+, the isospin partner of the recently discovered Ξc*0.

1 data table match query

CONST(NAME=EPS) is the parameter of the Peterson fragmentation function (C.Peterson et al., PR D27, 105 (1983)) D(N)/D(X) = FD(X) = const * (1/X)*1/(1- (1/X)-CONST(NAME=EPS)/(1-X))**2. Charged conjugate states are undestood.


Studies of the Cabibbo-suppressed decays D+ --> pi0 l+ nu and D+ --> eta e+ nu/e.

The CLEO collaboration Bartelt, John E. ; Csorna, S.E. ; Jain, V. ; et al.
Phys.Lett.B 405 (1997) 373-378, 1997.
Inspire Record 441553 DOI 10.17182/hepdata.47235

Using 4.8 fb$~{-1}$ of data taken with the CLEO II detector, the branching fraction for the Cabibbo-suppressed decay $D~+\to\pi~0\ell~+\nu$ measured relative to the Cabibbo favored decay $D~+\to\bar{K~0}\ell~+\nu$ is found to be $0.046\pm 0.014\pm 0.017$. Using $V_{cs}$ and $V_{cd}$ from unitarity constraints, we determine $| f_+~{\pi}(0)/f_+~K(0)|~2=0.9\pm 0.3\pm 0.3$ We also present a 90% confidence level upper limit for the branching ratio of the decay $D~+ \to \eta e~+\nu_e$ relative to that for $D~+ \to \pi~0 e~+\nu_e$ of 1.5.

1 data table match query

Formfactors for the D+ (D-) decay into pseudoscalar P. Charge conjugate states are implied. LEPTON+ means E+ or MU+. VCD and VCS are the elements of the CKM matrix (See R.M.Barnett et al (PDG), PR D54, 1 (1996)).


Continuum charged D* spin alignment at s**(1/2) = 10.5-GeV.

The CLEO collaboration Brandenburg, G. ; Briere, Roy A. ; Ershov, A. ; et al.
Phys.Rev.D 58 (1998) 052003, 1998.
Inspire Record 467595 DOI 10.17182/hepdata.47207

A measurement of the spin alignment of charged D^* mesons produced in continuum e^+ e^- \to c \bar{c} events at \sqrt{s}=10.5 GeV is presented. This study using 4.72 fb^{-1} of CLEO II data shows that there is little evidence of any D^* spin alignment.

4 data tables match query

Systematic errors are not given.

Systematic errors are not given.

Two decay modes of D0 --> K- PI+ and D0 --> K- PI+ PI0 are combined.

More…

Observation of two narrow states decaying into Xi/c+ gamma and Xi/c0 gamma.

The CLEO collaboration Jessop, C.P. ; Lingel, K. ; Marsiske, H. ; et al.
Phys.Rev.Lett. 82 (1999) 492-496, 1999.
Inspire Record 478217 DOI 10.17182/hepdata.47236

We report the first observation of two narrow charmed strange baryons decaying to $\Xi_c^+\gamma$ and $\Xi_c^0\gamma$, respectively, using data from the CLEO II detector at CESR. We interpret the observed signals as the $\Xi_c^{+\prime}(c{su})$ and $\Xi_c^{0\prime}(c{sd})$, the symmetric partners of the well-established antisymmetric $\Xi_c^+(c[su])$ and $\Xi_c^0(c[sd])$. The mass differences $M(\Xi_c^{+\prime})-M(\Xi_c^+)$ and $M(\Xi_c^{0\prime})-M(\Xi_c^0)$ are measured to be $107.8\pm 1.7\pm 2.5$ and $107.0\pm 1.4\pm 2.5 MeV/c^2$, respectively.

2 data tables match query

The data for two resonances are combined together.

CONST(NAME=EPS) is the parameter of the Peterson fragmentation function (C.Peterson et al., PR D27, 105 (1983)) D(N)/D(Z) = FD(Z) = const * (1/Z)*1/(1 - (1/Z)-CONST(NAME=EPS)/(1-Z))**2. The data for two resonances are combined together.


Measurements of the meson photon transition form factors of light pseudoscalar mesons at large momentum transfer.

The CLEO collaboration Gronberg, J. ; Hill, T.S. ; Kutschke, Robert K. ; et al.
Phys.Rev.D 57 (1998) 33-54, 1998.
Inspire Record 446031 DOI 10.17182/hepdata.47203

Using the CLEO~II detector, we have measured the differential cross sections for exclusive two-photon production of light pseudoscalar mesons $\pi^0$, $\eta$, and $\eta^{\prime}$. From our measurements we have obtained the form factors associated with the electromagnetic transitions $\gamma^*\gamma$ $\to$ meson. We have measured these form factors in the momentum transfer ranges from 1.5 to 9, 20, and 30 GeV$^2$ for $\pi^0$, $\eta$, and $\eta^{\prime}$, respectively, and have made comparisons to various theoretical predictions.

10 data tables match query

The results of PI0 --> GAMMA GAMMA analysis assuming Br(PI0-->2GAMMA)=0.99.

The results of ETA --> GAMMA GAMMA analysis assuming Br(ETA-->2GAMMA)=0.39.

The results of ETA --> 3PI0 analysis assuming Br(ETA-->3PI0)*Br(PI0-->2GAM MA)**3 = 0.31.

More…