Measurement of Z$γ$ production in proton-proton collisions at $\sqrt{s}$ = 13.6 TeV and constraints on neutral triple gauge couplings

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-SMP-24-002, 2025.
Inspire Record 3091053 DOI 10.17182/hepdata.166443

A measurement of the Z$γ$ production cross section in proton-proton collisions at a center-of-mass energy of 13.6 TeV is presented. Data corresponding to an integrated luminosity of 34.8 fb$^{-1}$, collected by the CMS experiment at the LHC in 2022 are used. Events with an oppositely charged pair of muons or electrons, with an invariant mass corresponding to a Z boson, together with an isolated photon are selected. The measured fiducial cross section for the combined electron and muon channels is 1.896 $\pm$ 0.033 (stat) $\pm$ 0.05 (syst) $\pm$ 0.006 (theo) pb, in agreement with the standard model prediction of 1.922 $\pm$ 0.094 pb. Constraints on neutral triple gauge couplings generated by dimension-8 operators in a recently proposed effective field theory framework are determined for the first time.

4 data tables

Histograms represent the post-fit distribution of $mass_{\mu^+\mu^-\gamma}$. The number of signal and background are associated with the total uncertainty, and the number of data events are associated with the poisson errors. The last bins include overflow events.

Histograms represent the post-fit distribution of $mass_{e^+e^-\gamma}$. The number of signal and background are associated with the total uncertainty, and the number of data events are associated with the poisson errors. The last bins include overflow events.

Expected and observed 95% CL limits on nTGC parameters for the combination of the measurements in the electron and muon channels. The first three rows show the results using the VPM that preserves only the U(1)EM symmetry, while the last three rows show the results from the GSPM that preserves the SU(2)L x U(1)Y symmetry. Corresponding to Table 3 in the paper.

More…

Search for a new neutral gauge boson produced in association with one or two b jets and decaying into a pair of muons in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
CMS-EXO-22-006, 2025.
Inspire Record 3084285 DOI 10.17182/hepdata.165428

A search for a new neutral gauge boson, Z', produced in association with one or two jets, including at least one b jet, and decaying into a pair of muons is presented. The analysis uses proton-proton collision data collected with the CMS detector at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. No significant deviation from background expectations is observed. Upper limits at 95% confidence level on the product of cross section, branching fraction to dimuons, acceptance, and efficiency, from 0.2 to 2 fb, are set for Z' boson masses between 125 and 350 GeV. Process-dependent products of acceptance and efficiency, and model-independent limits on the signal yield are provided. These are the only results to date in the 125$-$200 GeV mass range and the most stringent for b quark fusion production modes in the 200$-$350 GeV range, complementing inclusive Z' boson searches.

13 data tables

Distributions of $m_{\ell\ell}$ in the $\mathrm{SR_{b}^{mm}}$ SR. Events are divided by the bin width. Simulated signal shapes for $Z'$ boson masses of 125, 200, and 350 GeV are shown. The "Stat + syst" band shows the envelope of the fit variations with statistical uncertainties. The ratio of the nominal MC background values (dashed line) and data to the ABCD prediction is shown as a dashed line in the ratio plot. The MC background uncertainties are not shown for visual clarity.

Distributions of $m_{\ell\ell}$ in the $\mathrm{SR_{b+\textrm{j}/b}^{mm}}$ SR. Events are divided by the bin width. Simulated signal shapes for $Z'$ boson masses of 125, 200, and 350 GeV are shown. The "Stat + syst" band shows the envelope of the fit variations with statistical uncertainties. The ratio of the nominal MC background values (dashed line) and data to the ABCD prediction is shown as a dashed line in the ratio plot. The MC background uncertainties are not shown for visual clarity.

Data vs. the ABCD method background prediction for 2016 in $\mathrm{SR_{b}^{mm}}$. Events are divided by the bin width, hence fractional data counts. Error bars show statistical uncertainties of data. The blue band shows the propagated uncertainty of all individual fit variations in a given bin, which we consider to be uncorrelated. The lower panels show the ratio of the observed data to the background estimation.

More…

Vector boson scattering and anomalous quartic couplings in final states with $\ellν$qq or $\ell\ell$qq plus jets using proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-SMP-22-011, 2025.
Inspire Record 3006061 DOI 10.17182/hepdata.165281

A measurement is presented of the electroweak vector boson scattering production of ZV (V = W, Z) boson pairs associated with two jets in proton-proton collisions at a center-of-mass energy of 13 TeV. The data, corresponding to an integrated luminosity of 138 fb$^{-1}$, were collected at the CERN LHC with the CMS detector during the 2016$-$2018 data-taking period. The analysis targets final states with a pair of isolated electrons or muons from Z boson decays and three or four jets, depending on the momentum of the vector boson that decays into quarks. Signal strength is measured for events characterized by a large invariant mass of two forward jets with a wide pseudorapidity gap between them. The electroweak production of ZV in association with two jets is measured with an observed (expected) significance of 1.3 (1.8) standard deviations. A combination of the analyses of ZV channel and the previously published WV channel in the lepton plus jets final state places constraints on effective field theory parameters that describe anomalous electroweak production of WW, WZ, and ZZ boson pairs in association with two jets. Several world best limits are set on anomalous quartic gauge couplings in terms of dimension-8 standard model effective field theory operators.

10 data tables

Distributions of DNN score for the data and post-fit backgrounds (stacked histograms), in the SRs of the ZV channel for the b tag (left) and the b veto (right) channels, for the resolved (merged) category in the first (second) row. The post-fit VBS EW ZV signal is shown overlaid as a red solid line. The overflow is included in the last bin. The lower panels show the ratios of the data to the pre-fit background prediction and post-fit background yield as red open squares and blue points, respectively. The gray band in the lower panels indicates the systematic component of the post-fit background uncertainty. The vertical bars on the data points represent statistical uncertainties. The last bin includes overflow.

Distributions of DNN score for the data and post-fit backgrounds (stacked histograms), in the SRs of the ZV channel for the b tag (left) and the b veto (right) channels, for the resolved (merged) category in the first (second) row. The post-fit VBS EW ZV signal is shown overlaid as a red solid line. The overflow is included in the last bin. The lower panels show the ratios of the data to the pre-fit background prediction and post-fit background yield as red open squares and blue points, respectively. The gray band in the lower panels indicates the systematic component of the post-fit background uncertainty. The vertical bars on the data points represent statistical uncertainties. The last bin includes overflow.

Distributions of DNN score for the data and post-fit backgrounds (stacked histograms), in the SRs of the ZV channel for the b tag (left) and the b veto (right) channels, for the resolved (merged) category in the first (second) row. The post-fit VBS EW ZV signal is shown overlaid as a red solid line. The overflow is included in the last bin. The lower panels show the ratios of the data to the pre-fit background prediction and post-fit background yield as red open squares and blue points, respectively. The gray band in the lower panels indicates the systematic component of the post-fit background uncertainty. The vertical bars on the data points represent statistical uncertainties. The last bin includes overflow.

More…

Search for long-lived neutral particles in $pp$ collisions at $\sqrt{s}$ = 13 TeV that decay into displaced hadronic jets in the ATLAS calorimeter

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 79 (2019) 481, 2019.
Inspire Record 1719200 DOI 10.17182/hepdata.86552

This paper describes a search for pairs of neutral, long-lived particles decaying in the ATLAS calorimeter. Long-lived particles occur in many extensions to the Standard Model and may elude searches for new promptly decaying particles. The analysis considers neutral, long-lived scalars with masses between 5 GeV and 400 GeV, produced from decays of heavy bosons with masses between 125 GeV and 1000 GeV, where the long-lived scalars decay into Standard Model fermions. The analysis uses either 10.8 fb$^{-1}$ or 33.0 fb$^{-1}$ of data (depending on the trigger) recorded in 2016 at the LHC with the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13 TeV. No significant excess is observed, and limits are reported on the production cross section times branching ratio as a function of the proper decay length of the long-lived particles.

39 data tables

Trigger efficiency of simulated signal events as a function of the LLP $p_T$ for a selection of signal samples.

Trigger efficiency of simulated signal events as a function of the LLP decay position in the $x-y$ plane for LLPs decaying in the HCal barrel for three signal samples.

Trigger efficiency of simulated signal events as a function of the LLP decay position in the $z$ direction for LLPs decaying in the HCal endcaps for three signal samples.

More…

Searches for scalar leptoquarks and differential cross-section measurements in dilepton-dijet events in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV with the ATLAS experiment

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 79 (2019) 733, 2019.
Inspire Record 1718132 DOI 10.17182/hepdata.83968

Searches for scalar leptoquarks pair-produced in proton-proton collisions at $\sqrt{s}=13$ TeV at the Large Hadron Collider are performed by the ATLAS experiment. A data set corresponding to an integrated luminosity of 36.1 fb$^{-1}$ is used. Final states containing two electrons or two muons and two or more jets are studied, as are states with one electron or muon, missing transverse momentum and two or more jets. No statistically significant excess above the Standard Model expectation is observed. The observed and expected lower limits on the leptoquark mass at 95% confidence level extend up to 1.29 TeV and 1.23 TeV for first- and second-generation leptoquarks, respectively, as postulated in the minimal Buchm\"uller-R\"uckl-Wyler model, assuming a branching ratio into a charged lepton and a quark of 50%. In addition, measurements of particle-level fiducial and differential cross sections are presented for the $Z\rightarrow ee$, $Z\rightarrow\mu\mu$ and $t\bar{t}$ processes in several regions related to the search control regions. Predictions from a range of generators are compared with the measurements, and good agreement is seen for many of the observables. However, the predictions for the $Z\rightarrow\ell\ell$ measurements in observables sensitive to jet energies disagree with the data.

72 data tables

Inclusive cross-section and uncertainty from each source, for the dominant process in the each measurement region.

Differential cross-section and uncertainty from each source, as a function of leading $p_{T}^j$ for the dominant process in the $eejj$ measurement region.

Differential cross-section and uncertainty from each source, as a function of leading $p_{T}^j$ for the dominant process in the $\mu\mu jj$ measurement region.

More…