Studies of the correlations of the two highest transverse momentum (leading) jets in individual Pb+Pb collision events can provide information about the mechanism of jet quenching by the hot and dense matter created in such collisions. In Pb+Pb and pp collisions at $\sqrt{s_{_\text{NN}}}$ = 5.02 TeV, measurements of the leading dijet transverse momentum ($p_{\mathrm{T}}$) correlations are presented. Additionally, measurements in Pb+Pb collisions of the dijet pair nuclear modification factors projected along leading and subleading jet $p_{\mathrm{T}}$ are made. The measurements are performed using the ATLAS detector at the LHC with 260 pb$^{-1}$ of pp data collected in 2017 and 2.2 nb$^{-1}$ of Pb+Pb data collected in 2015 and 2018. An unfolding procedure is applied to the two-dimensional leading and subleading jet $p_{\mathrm{T}}$ distributions to account for experimental effects in the measurement of both jets. Results are provided for dijets with leading jet $p_{\mathrm{T}}$ greater than 100 GeV. Measurements of the dijet-yield-normalized $x_{\mathrm{J}}$ distributions in Pb+Pb collisions show an increased fraction of imbalanced jets compared to pp collisions; these measurements are in agreement with previous measurements of the same quantity at 2.76 TeV in the overlapping kinematic range. Measurements of the absolutely-normalized dijet rate in Pb+Pb and pp collisions are also presented, and show that balanced dijets are significantly more suppressed than imbalanced dijets in Pb+Pb collisions. It is observed in the measurements of the pair nuclear modification factors that the subleading jets are significantly suppressed relative to leading jets with $p_{\mathrm{T}}$ between 100 and 316 GeV for all centralities in Pb+Pb collisions.
Inclusive and differential measurements of the top-antitop ($t\bar{t}$) charge asymmetry $A_\text{C}^{t\bar{t}}$ and the leptonic asymmetry $A_\text{C}^{\ell\bar{\ell}}$ are presented in proton-proton collisions at $\sqrt{s} = 13$ TeV recorded by the ATLAS experiment at the CERN Large Hadron Collider. The measurement uses the complete Run 2 dataset, corresponding to an integrated luminosity of 139 fb$^{-1}$, combines data in the single-lepton and dilepton channels, and employs reconstruction techniques adapted to both the resolved and boosted topologies. A Bayesian unfolding procedure is performed to correct for detector resolution and acceptance effects. The combined inclusive $t\bar{t}$ charge asymmetry is measured to be $A_\text{C}^{t\bar{t}} = 0.0068 \pm 0.0015$, which differs from zero by 4.7 standard deviations. Differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the $t\bar{t}$ system. Both the inclusive and differential measurements are found to be compatible with the Standard Model predictions, at next-to-next-to-leading order in quantum chromodynamics perturbation theory with next-to-leading-order electroweak corrections. The measurements are interpreted in the framework of the Standard Model effective field theory, placing competitive bounds on several Wilson coefficients.
We present the results of a search for the charged-lepton-flavor violating decays $B^0 \rightarrow K^{*0}\tau^\pm \ell^{\mp}$, where $\ell^{\mp}$ is either an electron or a muon. The results are based on 365 fb$^{-1}$ and 711 fb$^{-1}$ datasets collected with the Belle II and Belle detectors, respectively. We use an exclusive hadronic $B$-tagging technique, and search for a signal decay in the system recoiling against a fully reconstructed $B$ meson. We find no evidence for $B^0 \rightarrow K^{*0}\tau^\pm \ell^{\mp}$ decays and set upper limits on the branching fractions in the range of $(2.9-6.4)\times10^{-5}$ at 90% confidence level.
We report measurements of $\varUpsilon(1S)$, $\varUpsilon(2S)$ and $\varUpsilon(3S)$ production in $\textit{p+p}$ collisions at $\sqrt{s}=500\:\mathrm{GeV}$ by the STAR experiment in year 2011, corresponding to an integrated luminosity $\mathcal{L}_{int}=13\:\mathrm{pb^{-1}}$. The results provide precise cross sections, transverse momentum ($p_{T}$) and rapidity ($y$) spectra, as well as cross section ratios for $p_{\mathrm{T}}<10\:\mathrm{GeV/c}$ and $|y|<1$. The dependence of the $\varUpsilon$ yield on charged particle multiplicity has also been measured, offering new insights into the mechanisms of quarkonium production. The data are compared to various theoretical models: the Color Evaporation Model (CEM) accurately describes the $\varUpsilon(1S)$ production, while the Color Glass Condensate + Non-relativistic Quantum Chromodynamics (CGC+NRQCD) model overestimates the data, particularly at low $p_{T}$. Conversely, the Color Singlet Model (CSM) underestimates the rapidity dependence. These discrepancies highlight the need for further development in understanding the production dynamics of heavy quarkonia in high-energy hadronic collisions. The trend in the multiplicity dependence is consistent with CGC/Saturation and String Percolation models or $\varUpsilon$ production happening in multiple parton interactions modeled by PYTHIA8.
Ultrarelativistic heavy-ion collisions create a quark-gluon plasma (QGP), a hot and dense state of strongly interacting QCD matter. In ultracentral collisions, the QGP volume remains nearly constant event-by-event, while its total entropy can fluctuate due to quantum effects, leading to temperature variations. These features allow the correlation between the mean transverse momentum $(\langle p_{\mathrm{T}} \rangle)$ of charged hadrons and their multiplicity to serve as a probe of the QGP's speed of sound, $c_{s}$. This study extracts $c_{s}$ by analyzing the relative increase in $\langle p_{\mathrm{T}} \rangle$ with respect to the charged-particle density $(\langle \mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta \rangle)$ at midrapidity in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02~\mathrm{TeV}$, using data from the ALICE detector. Centrality is determined with estimators based on multiplicity and transverse energy, applying a pseudorapidity gap to reduce selection biases. The extracted value of $c_{s}^{2}$ is found to strongly depend on the employed centrality estimator and ranges between $0.1146 \pm 0.0028 \,\mathrm{(stat.)} \pm 0.0065 \,\mathrm{(syst.)}$ and $0.4374 \pm 0.0006 \mathrm{(stat.)} \pm 0.0184 \mathrm{(syst.)}$ in natural units. Additionally, the event-by-event $[p_{\mathrm{T}}]$ distribution is studied through its variance, skewness, and kurtosis. A pronounced decrease in the self-normalized variance and a peak followed by a drop in skewness suggest the suppression of impact-parameter fluctuations in ultracentral collisions. These observations provide new insights into the thermodynamic properties and initial-state fluctuations of the QGP.
Atomic nuclei are self-organized, many-body quantum systems bound by strong nuclear forces within femtometer-scale space. These complex systems manifest a variety of shapes, traditionally explored using non-invasive spectroscopic techniques at low energies. However, at these energies, their instantaneous shapes are obscured by long-timescale quantum fluctuations, making direct observation challenging. Here we introduce the ``collective flow assisted nuclear shape imaging'' method, which images the nuclear global shape by colliding them at ultrarelativistic speeds and analyzing the collective response of outgoing debris. This technique captures a collision-specific snapshot of the spatial matter distribution within the nuclei, which, through the hydrodynamic expansion, imprints patterns on the particle momentum distribution observed in detectors. We benchmark this method in collisions of ground state Uranium-238 nuclei, known for their elongated, axial-symmetric shape. Our findings show a large deformation with a slight deviation from axial symmetry in the nuclear ground state, aligning broadly with previous low-energy experiments. This approach offers a new method for imaging nuclear shapes, enhances our understanding of the initial conditions in high-energy collisions and addresses the important issue of nuclear structure evolution across energy scales.
The transverse momentum spectra and integrated yields of $\overlineΣ^{\pm}$ have been measured in pp and p-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV with the ALICE experiment. Measurements are performed via the newly accessed decay channel $\overlineΣ^{\pm} \rightarrow {\rm\overline{n}}π^{\pm}$. A new method of antineutron reconstruction with the PHOS electromagnetic spectrometer is developed and applied to this analysis. The $p_{\rm T}$ spectra of $\overlineΣ^{\pm}$ are measured in the range $0.5 < p_{\rm T} < 3$ GeV/$c$ and compared to predictions of the PYTHIA 8, DPMJET, PHOJET, EPOS LHC and EPOS4 models. The EPOS LHC and EPOS4 models provide the best descriptions of the measured spectra both in pp and p-Pb collisions, while models which do not account for multiparton interactions provide a considerably worse description at high $p_{\rm T}$. The total yields of $\overlineΣ^{\pm}$ in both pp and p-Pb collisions are compared to predictions of the Thermal-FIST model and dynamical models PYTHIA 8, DPMJET, PHOJET, EPOS LHC and EPOS4. All models reproduce the total yields in both colliding systems within uncertainties. The nuclear modification factors $R_{\rm pPb}$ for both $\overlineΣ^{+}$ and $\overlineΣ^{-}$ are evaluated and compared to those of protons, $Λ$ and $Ξ$ hyperons, and predictions of EPOS LHC and EPOS4 models. No deviations of $R_{\rm pPb}$ for $\overlineΣ^{\pm}$ from the model predictions or measurements for other hadrons are found within uncertainties.
In a Quark-Gluon Plasma (QGP), the fundamental building blocks of matter, quarks and gluons, are under extreme conditions of temperature and density. A QGP could exist in the early stages of the Universe, and in various objects and events in the cosmos. The thermodynamic and hydrodynamic properties of the QGP are described by Quantum Chromodynamics (QCD) and can be studied in heavy-ion collisions. Despite being a key thermodynamic parameter, the QGP temperature is still poorly known. Thermal lepton pairs ($e^+e^-$ and $\mu^+\mu^-$) are ideal penetrating probes of the true temperature of the emitting source, since their invariant-mass spectra suffer neither from strong final-state interactions nor from blue-shift effects due to rapid expansion. Here we measure the QGP temperature using thermal $e^+e^-$ production at the Relativistic Heavy Ion Collider (RHIC). The average temperature from the low-mass region (in-medium $\rho^0$ vector-meson dominant) is $(1.99 \pm 0.24) \times 10^{12}$ K, consistent with the chemical freeze-out temperature from statistical models and the phase transition temperature from LQCD. The average temperature from the intermediate mass region (above the $\rho^0$ mass, QGP dominant) is significantly higher at $(3.40 \pm 0.55)\times 10^{12}$ K. This work provides essential experimental thermodynamic measurements to map out the QCD phase diagram and understand the properties of matter under extreme conditions.
Cross-sections for the production of a $Z$ boson in association with two photons are measured in proton$-$proton collisions at a centre-of-mass energy of 13 TeV. The data used correspond to an integrated luminosity of 139 fb$^{-1}$ recorded by the ATLAS experiment during Run 2 of the LHC. The measurements use the electron and muon decay channels of the $Z$ boson, and a fiducial phase-space region where the photons are not radiated from the leptons. The integrated $Z(\rightarrow\ell\ell)\gamma\gamma$ cross-section is measured with a precision of 12% and differential cross-sections are measured as a function of six kinematic variables of the $Z\gamma\gamma$ system. The data are compared with predictions from MC event generators which are accurate to up to next-to-leading order in QCD. The cross-section measurements are used to set limits on the coupling strengths of dimension-8 operators in the framework of an effective field theory.
Differential cross-sections are measured for the production of four charged leptons in association with two jets. These measurements are sensitive to final states in which the jets are produced via the strong interaction as well as to the purely-electroweak vector boson scattering process. The analysis is performed using proton-proton collision data collected by ATLAS at $\sqrt{s}=13$ TeV and with an integrated luminosity of 140 fb$^{-1}$. The data are corrected for the effects of detector inefficiency and resolution and are compared to state-of-the-art Monte Carlo event generator predictions. The differential cross-sections are used to search for anomalous weak-boson self-interactions that are induced by dimension-six and dimension-eight operators in Standard Model effective field theory.