Date

Measurement of the strong coupling constant alpha-s from global event shape variables of hadronic Z decays

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 255 (1991) 623-633, 1991.
Inspire Record 301661 DOI 10.17182/hepdata.29491

An analysis of global event-shape variables has been carried out for the reaction e + e − →Z 0 →hadrons to measure the strong coupling constant α s . This study is based on 52 720 hadronic events obtained in 1989/90 with the ALEPH detector at the LEP collider at energies near the peak of the Z-resonance. In order to determine α s , second order QCD predictions modified by effects of perturbative higher orders and hadronization were fitted to the experimental distributions of event-shape variables. From a detailed analysis of the theoretical uncertainties we find that this approach is best justified for the differential two-jet rate, from which we obtain α s ( M Z 2 ) = 0.121 ± 0.002(stat.)±0.003(sys.)±0.007(theor.) using a renormalization scale ω = 1 2 M Z . The dependence of α s ( M Z 2 ) on ω is parameterized. For scales m b <ω< M Z the result varies by −0.012 +0.007 .

1 data table

The second DSYS error is the theoretical error.


A Measurement of the Z0 ---> b anti-b forward - backward asymmetry

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 252 (1990) 713-721, 1990.
Inspire Record 301901 DOI 10.17182/hepdata.29506

We have measured the forward-backward asymmetry in Z 0 → b b decays using hadronic events containing muons and electrons. The data sample corresponds to 118 200 hadronic events at √ s ≈ M z . From a fit to the single and dilepton p and P ⊥ spectra, we determine A b b =0.130 −0.042 +0.044 including the correction for B 0 − B 0 mixing.

3 data tables

Observed asymmetry from fit to single and dilepton P and PT spectra assuming no mixing.

Asymmetry corrected for the effects of mixing using the L3 observed mixing parameter chi(B) = 0.178 +0.049,-0.040.

SIN2TW determined from the asymmetry measurement.


Measurement of alpha-s from the structure of particle clusters produced in hadronic Z decays

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 257 (1991) 479-491, 1991.
Inspire Record 302771 DOI 10.17182/hepdata.29466

Using 106 000 hadronic events obtained with the ALEPH detector at LEP at energies close to the Z resonance peak, the strong coupling constant α s is measured by an analysis of energy-energy correlations (EEC) and the global event shape variables thrust, C -parameter and oblateness. It is shown that the theoretical uncertainties can be significantly reduced if the final state particles are first combined in clusters using a minimum scaled invariant mass cut, Y cut , before these variables are computed. The combined result from all shape variables of pre-clustered events is α s ( M Z 2 = 0.117±0.005 for a renormalization scale μ= 1 2 M Z . For μ values between M Z and the b-quark mass, the result changes by −0.009 +0.006 .

2 data tables

No description provided.

Error contains both experimental and theoretical errors.


Determination of alpha-s from energy-energy correlations measured on the Z0 resonance.

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 257 (1991) 469-478, 1991.
Inspire Record 324427 DOI 10.17182/hepdata.29467

We present a study of energy-energy correlations based on 83 000 hadronic Z 0 decays. From this data we determine the strong coupling constant α s to second order QCD: α s (91.2 GeV)=0.121±0.004(exp.)±0.002(hadr.) −0.006 +0.009 (scale)±0.006(theor.) from the energy-energy correlation and α s (91.2 GeV)=0.115±0.004(exp.) −0.004 +0.007 (hadr.) −0.000 +0.002 (scale) −0.005 +0.003 (theor.) from its asymmetry using a renormalization scale μ 1 =0.1 s . The first error (exp.) is the systematic experimental uncertainly, the statistical error is negligible. The other errors are due to hadronization (hadr.), renormalization scale (scale) uncertainties, and differences between the calculated second order corrections (theor.).

3 data tables

Statistical errors are equal to or less than 0.6 pct in each bin. There is also a 4 pct systematic uncertainty.

ALPHA_S from the EEC measurement.. The first error given is the experimental error which is mainly the overall systematic uncertainty: the first (DSYS) error is due to hadronization, the second to the renormalization scale, and the third differences between the calculated and second order corrections.

ALPHA_S from the AEEC measurement.. The first error given is the experimental error which is mainly the overall systematic uncertainty: the first (DSYS) error is due to hadronization, the second to the renormalization scale, and the third differences between the calculated and second order corrections.


Transverse momentum of J / psi produced in p Cu, p U, O-16 Cu, O-16 U and S-32 U collisions at 200-GeV per nucleon.

The NA38 collaboration Baglin, C. ; Baldisseri, A. ; Bussiere, A. ; et al.
Phys.Lett.B 262 (1991) 362-368, 1991.
Inspire Record 321322 DOI 10.17182/hepdata.29390

None

8 data tables

No description provided.

CONTINUUM MUONS ORIGINATE MAINLY FROM VECTOR MESON DECAYS, SEMI-LEPTONIC DECAYS OF D DBAR PAIRS AND FROM DRELL-YAN MECHANISM.

No description provided.

More…

Phi, rho, and omega production in p U, O U and S U reactions at 200-GeV per nucleon

The NA38 collaboration Baglin, C. ; Baldisseri, A. ; Bussiere, A. ; et al.
Phys.Lett.B 272 (1991) 449-454, 1991.
Inspire Record 325656 DOI 10.17182/hepdata.29289

Low mass muon pair production at high P T and low X F studied in pU, OU and SU 200 GeV per nucleon react ions. When energy density or projectile mass are increased, φ production is enhanced as compared with the yield of muon pairs in the mass continuum (1.7< M μμ < 2.4 GeV/ c 2 ), whereas the production of ω and ϱ, experimentally unresolved, remains approximately constant. This φ enhancement is in agreement with predictions based on quark-gluon plasma formation and, together with the previously reported J/Ψ suppression, puts severe constraints on a purely hadronic description of nucleus-nucleus collisions.

1 data table

The cross sections are parametrized as A**POWER.


K+ elastic scattering from C and Li-6 at 715-MeV/c

Michael, R. ; Barakat, M.B. ; Bart, S. ; et al.
Phys.Lett.B 382 (1996) 29-34, 1996.
Inspire Record 328538 DOI 10.17182/hepdata.28355

Elastic differential cross sections for K + mesons scattered from nat C and 6 Li targets have been measured at an incident momentum of 715 MeV/c and at angles of 7° to 42° in the laboratory frame. The experimental cross sections agree, within errors, with two different parameter-free impulse approximation calculations. To reduce the effects of the systematic errors, the ratio of the experimental cross sections for nat C to 6 Li is compared to the theoretical values, and these ratios do not agree with theory. This discrepancy suggests either a density-dependent alteration of K + -nucleon amplitudes or a failure of the optical potential calculations to describe these nuclides adequately.

2 data tables

No description provided.

No description provided.


Transverse momentum of dimuons production in p U, O U and S U collisions at 200-GeV/nucleon.

The NA38 collaboration Abreu, M.C. ; Alimi, M. ; Baglin, C. ; et al.
Nucl.Phys.A 525 (1991) 469C-472C, 1991.
Inspire Record 328922 DOI 10.17182/hepdata.36783

Dimuon production m p-U, O-U and S-U collisions has been studied at 200 GeV/N. It is observed that 〈 p T 〉 and 〈 p 2 T 〉 of the J / Ψ transverse momentum distributions increase with the transverse energy of the ion induced reactions. Such a marked behaviour is not seen for muon pairs of the continuum.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of electroweak parameters from hadronic and leptonic decays of the Z0

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Z.Phys.C 51 (1991) 179-204, 1991.
Inspire Record 314418 DOI 10.17182/hepdata.14940

From the measured ratio of the invisible and the leptonic decay widths of theZ0, we determine the number of light neutrino species to beNv=3.05±0.10. We include our measurements of the forward-backward asymmetry for the leptonic channels in a fit to determine the vector and axial-vector neutral current coupling constants of charged leptons to theZ0. We obtain\(\bar g_V=- 0.046_{ - 0.012}^{ + 0.015}\) and\(\bar g_A=- 0.500 \pm 0.003\). In the framework of the Standard Model, we estimate the top quark mass to bemt=193−69+52±16 (Higgs) GeV, and we derive a value for the weak mixing angle of sin2θW=1−(MW/MZ)2=0.222 ± 0.008, corresponding to an effective weak mixing angle of\(\sin ^2 \bar \theta _W= 0.2315\pm0.0025\).

15 data tables

Additional systematic uncertainty of 0.4 pct.

Acceptance corrected cross section for cos(theta)<0.8 and for extrapolation to full solid angle. Additional systematic uncertainty of 0.8 pct.

Acceptance corrected cross section for cos(theta)<0.7 and for extrapolation to full solid angle. Additional systematic uncertainty of 2.1 pct.

More…

Measurement of the inclusive production of neutral pions and charged particles on the Z0 resonance

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 259 (1991) 199-208, 1991.
Inspire Record 314407 DOI 10.17182/hepdata.29468

We present a study of the inclusive production of neutral pions and charged particles from 112 000 hadronic Z 0 decays. The measured inclusive momentum distributions can be reproduced by parton shower Monte Carlo programs and also by an analytical QCD calculation. Comparing our results to e + e − data between √ s = 9 and 91 GeV, we findfind that the evolution of the spectra with center of mass energy is consistent with the QCD predictions.

6 data tables

No description provided.

Error is dominated by systematic uncertainties.

No description provided.

More…