The total 1r- -p interaction cross sections (of) were measured with an accuracy of 1.5-2% for about 50 pion energies between 140 and 360 Mev. The pion energy was known to within ± 1%. No anomalies in the energy dependence of Of were found which could indicate the existence of a p0meson with a mass in the range of 270 to 410 Mev/c2• The data are inconsistent with the energy value E2 = 650 Mev for the second maximum of Of found by Frisch et al. 7 but agree with the conclusion drawn by Brisson et al. 8 that it should be located at a lower energy ( E2 :::::: 610 Mev). The data are in agreement with the dispersion relations for 1r- -p scattering. It is thus demonstrated that the PuppiStanghellini problem as such no longer exists and that it arose only as a result of an inaccurate knowledge of the total 1r--p interaction cross section.
No description provided.
None
No description provided.
No description provided.
Cross sections for pi+-p elastic scattering have been measured to high precision, for beam momenta between 800 and 1240 MeV/c, by the EPECUR Collaboration, using the ITEP proton synchrotron. The data precision allows comparisons of the existing partial-wave analyses (PWA) on a level not possible previously. These comparisons imply that updated PWA are required.
Differential cross section of elastic $\pi^+$p-scattering at P= 800.25 MeV/c. Errors shown are statistical only.
Differential cross section of elastic $\pi^+$p-scattering at P= 803.75 MeV/c. Errors shown are statistical only.
Differential cross section of elastic $\pi^+$p-scattering at P= 807.25 MeV/c. Errors shown are statistical only.
None
No description provided.
No description provided.
No description provided.
The ITEP-PNPI collaboration presents the results of the measurements of the spin rotation parameter A in the elastic scattering of positive and negative pions on protons at P_beam = 1.62 GeV/c. The setup included a longitudinally-polarized proton target with superconductive magnet, multiwire spark chambers and a carbon polarimeter with thick filter. Results are compared to the predictions of partial wave analyses. The experiment was performed at the ITEP proton synchrotron, Moscow.
No description provided.
No description provided.
The pion induced pion production reactions π±p→π+π±n were studied at projectile incident energies of 223, 243, 264, 284, and 305 MeV, using a cryogenic liquid hydrogen target. The Canadian High Acceptance Orbit Spectrometer was used to detect the two outgoing pions in coincidence. The experimental results are presented in the form of single differential cross sections. Total cross sections obtained by integrating the differential quantities are also reported. In addition, the invariant mass distributions from the (π+π−) channel were fitted to determine the parameters for an extended model based on that of Oset and Vicente-Vacas. We find the model parameters obtained from fitting the (π+π−) data do not describe the invariant mass distributions in the (π+π+) channel.
Total cross sections were obtained by integrating the differential cross section over all three variables: M(pi,pi)**2, t, Cos(Theta(pi)).
Total cross sections were obtained by integrating the differential cross section over all three variables: M(pi,pi)**2, t, Cos(Theta(pi)).
The total cross section for the π−p→π−π+n reaction has been measured at incident pion kinetic energies of 200, 190, 184, and 180 MeV. In addition, the π+p→π+π+n reaction was measured at 200 and 184 MeV. A fit of the cross sections by heavy baryon chiral perturbation theory yields values of 8.5±0.6(mπ−3) and 2.5±0.1(mπ−3) for the reaction matrix elements A10 and A32, which correspond to values for the s-wave isospin-0 and isospin-2 π−π scattering lengths of a0=0.23±0.08(mπ−1) and a2=−0.031±0.008(mπ−1), respectively.
No description provided.
The ITEP-PNPI collaboration presents the first results of the spin rotation parameter A + measurements in the second resonance region. The experiment was performed at the ITEP accelerator at a positive pion beam momentum 1.43 GeV/c for scattering angles θ cm = 127° and 133°. The setup was based on a polarized proton target and a carbon-plate polarimeter. The obtained data is compared with the predictions of the existing partial-wave analyses.
No description provided.
Total cross-section measurements of the π+p→π+π+n reaction at pion kinetic energies of 180, 184, 190, and 200 MeV are reported. The threshold value for the amplitude a(π+π+) as well as the s-wave, isospin 2, ππ scattering length a20 were determined. The results were found to be in agreement with chiral perturbation theory and inconsistent with the calculations of Jacob and Scadron and the model of dominance by quark loop anomalies.
No description provided.
Total cross sections for the π − p single charge exchange and 20° “partial-total” cross sections have been measured between 126 and 202 MeV pion energy. The former are about 4% below similar results of Bugg et al. and (5–10)% below predictions made with currently accepted phase shifts. The latter agree quite well with calculations.
No description provided.