Light isovector resonances in $\pi^- p \to \pi^-\pi^-\pi^+ p$ at 190 GeV/${\it c}$

The COMPASS collaboration Aghasyan, M. ; Alexeev, M.G. ; Alexeev, G.D. ; et al.
Phys.Rev.D 98 (2018) 092003, 2018.
Inspire Record 1655631 DOI 10.17182/hepdata.82958

We have performed the most comprehensive resonance-model fit of $\pi^-\pi^-\pi^+$ states using the results of our previously published partial-wave analysis (PWA) of a large data set of diffractive-dissociation events from the reaction $\pi^- + p \to \pi^-\pi^-\pi^+ + p_\text{recoil}$ with a 190 GeV/$c$ pion beam. The PWA results, which were obtained in 100 bins of three-pion mass, $0.5 < m_{3\pi} < 2.5$ GeV/$c^2$, and simultaneously in 11 bins of the reduced four-momentum transfer squared, $0.1 < t' < 1.0$ $($GeV$/c)^2$, are subjected to a resonance-model fit using Breit-Wigner amplitudes to simultaneously describe a subset of 14 selected waves using 11 isovector light-meson states with $J^{PC} = 0^{-+}$, $1^{++}$, $2^{++}$, $2^{-+}$, $4^{++}$, and spin-exotic $1^{-+}$ quantum numbers. The model contains the well-known resonances $\pi(1800)$, $a_1(1260)$, $a_2(1320)$, $\pi_2(1670)$, $\pi_2(1880)$, and $a_4(2040)$. In addition, it includes the disputed $\pi_1(1600)$, the excited states $a_1(1640)$, $a_2(1700)$, and $\pi_2(2005)$, as well as the resonancelike $a_1(1420)$. We measure the resonance parameters mass and width of these objects by combining the information from the PWA results obtained in the 11 $t'$ bins. We extract the relative branching fractions of the $\rho(770) \pi$ and $f_2(1270) \pi$ decays of $a_2(1320)$ and $a_4(2040)$, where the former one is measured for the first time. In a novel approach, we extract the $t'$ dependence of the intensity of the resonances and of their phases. The $t'$ dependence of the intensities of most resonances differs distinctly from the $t'$ dependence of the nonresonant components. For the first time, we determine the $t'$ dependence of the phases of the production amplitudes and confirm that the production mechanism of the Pomeron exchange is common to all resonances.

2 data tables

Real and imaginary parts of the normalized transition amplitudes $\mathcal{T}_a$ of the 14 selected partial waves in the 1100 $(m_{3\pi}, t')$ cells (see Eq. (12) in the paper). The wave index $a$ represents the quantum numbers that uniquely define the partial wave. The quantum numbers are given by the shorthand notation $J^{PC} M^\varepsilon [$isobar$] \pi L$. We use this notation to label the transition amplitudes in the column headers. The $m_{3\pi}$ values that are given in the first column correspond to the bin centers. Each of the 100 $m_{3\pi}$ bins is 20 MeV/$c^2$ wide. Since the 11 $t'$ bins are non-equidistant, the lower and upper bounds of each $t'$ bin are given in the column headers. The transition amplitudes define the spin-density matrix elements $\varrho_{ab}$ for waves $a$ and $b$ according to Eq. (18). The spin-density matrix enters the resonance-model fit via Eqs. (33) and (34). The transition amplitudes are normalized via Eqs. (9), (16), and (17) such that the partial-wave intensities $\varrho_{aa} = |\mathcal{T}_a|^2$ are given in units of acceptance-corrected number of events. The relative phase $\Delta\phi_{ab}$ between two waves $a$ and $b$ is given by $\arg(\varrho_{ab}) = \arg(\mathcal{T}_a) - \arg(\mathcal{T}_b)$. Note that only relative phases are well-defined. The phase of the $1^{++}0^+ \rho(770) \pi S$ wave was set to $0^\circ$ so that the corresponding transition amplitudes are real-valued. In the PWA model, some waves are excluded in the region of low $m_{3\pi}$ (see paper and [Phys. Rev. D 95, 032004 (2017)] for a detailed description of the PWA model). For these waves, the transition amplitudes are set to zero. The tables with the covariance matrices of the transition amplitudes for all 1100 $(m_{3\pi}, t')$ cells can be downloaded via the 'Additional Resources' for this table.

Decay phase-space volume $I_{aa}$ for the 14 selected partial waves as a function of $m_{3\pi}$, normalized such that $I_{aa}(m_{3\pi} = 2.5~\text{GeV}/c^2) = 1$. The wave index $a$ represents the quantum numbers that uniquely define the partial wave. The quantum numbers are given by the shorthand notation $J^{PC} M^\varepsilon [$isobar$] \pi L$. We use this notation to label the decay phase-space volume in the column headers. The labels are identical to the ones used in the column headers of the table of the transition amplitudes. $I_{aa}$ is calculated using Monte Carlo integration techniques for fixed $m_{3\pi}$ values, which are given in the first column, in the range from 0.5 to 2.5 GeV/$c^2$ in steps of 10 MeV/$c^2$. The statistical uncertainties given for $I_{aa}$ are due to the finite number of Monte Carlo events. $I_{aa}(m_{3\pi})$ is defined in Eq. (6) in the paper and appears in the resonance model in Eqs. (19) and (20).


Elastic differential cross sections for $\pi^+ p$ at 1.76 and 2.08 GeV/c

James, F.E. ; Johnson, J.A. ; Kraybill, H.L. ;
Phys.Lett. 19 (1965) 72-74, 1965.
Inspire Record 1400913 DOI 10.17182/hepdata.30157

None

2 data tables

No description provided.

No description provided.


MEASUREMENT OF THE POLARIZATION PARAMETER IN pi+ p SCATTERING FROM 750-MeV/c TO 3750-MeV/c

Johnson, Clairborne Holt, Jr. ;
UCRL-17683, 2012.
Inspire Record 1087657 DOI 10.17182/hepdata.18471

None

15 data tables

No description provided.

No description provided.

No description provided.

More…

Exclusive measurements of pi+- p --> pi+ pi+- n near threshold.

The CHAOS collaboration Kermani, M. ; Amaudruz, P.A. ; Bonutti, F. ; et al.
Phys.Rev.C 58 (1998) 3419-3430, 1998.
Inspire Record 483005 DOI 10.17182/hepdata.25726

The pion induced pion production reactions π±p→π+π±n were studied at projectile incident energies of 223, 243, 264, 284, and 305 MeV, using a cryogenic liquid hydrogen target. The Canadian High Acceptance Orbit Spectrometer was used to detect the two outgoing pions in coincidence. The experimental results are presented in the form of single differential cross sections. Total cross sections obtained by integrating the differential quantities are also reported. In addition, the invariant mass distributions from the (π+π−) channel were fitted to determine the parameters for an extended model based on that of Oset and Vicente-Vacas. We find the model parameters obtained from fitting the (π+π−) data do not describe the invariant mass distributions in the (π+π+) channel.

2 data tables

Total cross sections were obtained by integrating the differential cross section over all three variables: M(pi,pi)**2, t, Cos(Theta(pi)).

Total cross sections were obtained by integrating the differential cross section over all three variables: M(pi,pi)**2, t, Cos(Theta(pi)).


Determination of the pi+- p --> pi+- pi+ n cross section near threshold.

Lange, J.B. ; Duncan, F. ; Ambardar, A. ; et al.
Phys.Rev.Lett. 80 (1998) 1597-1600, 1998.
Inspire Record 468089 DOI 10.17182/hepdata.19535

The total cross section for the π−p→π−π+n reaction has been measured at incident pion kinetic energies of 200, 190, 184, and 180 MeV. In addition, the π+p→π+π+n reaction was measured at 200 and 184 MeV. A fit of the cross sections by heavy baryon chiral perturbation theory yields values of 8.5±0.6(mπ−3) and 2.5±0.1(mπ−3) for the reaction matrix elements A10 and A32, which correspond to values for the s-wave isospin-0 and isospin-2 π−π scattering lengths of a0=0.23±0.08(mπ−1) and a2=−0.031±0.008(mπ−1), respectively.

1 data table

No description provided.


Integral cross-sections for pi- p interaction in the 3,3 resonance region

Friedman, E. ; Paul, M. ; Schechter, M. ; et al.
Phys.Lett.B 302 (1993) 18-22, 1993.
Inspire Record 362059 DOI 10.17182/hepdata.28945

Total cross sections for the π − p single charge exchange and 20° “partial-total” cross sections have been measured between 126 and 202 MeV pion energy. The former are about 4% below similar results of Bugg et al. and (5–10)% below predictions made with currently accepted phase shifts. The latter agree quite well with calculations.

1 data table

No description provided.


Experimental study of the near threshold pi+ p ---> pi+ pi+ n cross-section and chiral symmetry

Sevior, M.E. ; Ambardar, A. ; Brack, J.T. ; et al.
Phys.Rev.D 48 (1993) 3987-3995, 1993.
Inspire Record 364198 DOI 10.17182/hepdata.22551

Total cross-section measurements of the π+p→π+π+n reaction at pion kinetic energies of 180, 184, 190, and 200 MeV are reported. The threshold value for the amplitude a(π+π+) as well as the s-wave, isospin 2, ππ scattering length a20 were determined. The results were found to be in agreement with chiral perturbation theory and inconsistent with the calculations of Jacob and Scadron and the model of dominance by quark loop anomalies.

1 data table

No description provided.


Integral cross-sections for pi+ p interaction in the 3,3 resonance region

Friedman, E. ; Goldring, A. ; Johnson, R.R. ; et al.
Phys.Lett.B 254 (1991) 40-43, 1991.
Inspire Record 316889 DOI 10.17182/hepdata.29507

Integral cross sections for π + p interaction have been measured between 125.9 and 201.7 MeV using the transmission method. Over this energy range the results are in very good agreement with predictions made with currently accepted phase shifts. These results are also consistent with similar measurements at lower energies when the dispersion relation constrained Karlsruhe phase shifts are used.

1 data table

No description provided.


Integral cross-sections for pi+ p interactions at low-energies

Friedman, E. ; Goldring, A. ; Wagner, G.J. ; et al.
Nucl.Phys.A 514 (1990) 601-612, 1990.
Inspire Record 296987 DOI 10.17182/hepdata.36853

Integral cross sections for the elastic scattering of π + by protons into angles greater than 20° or 30° (lab) have been measured by the beam-attenuation technique over the energy range of 45–126MeV. The measurements are aimed at providing independent checks on the absolute normalization of differential cross sections, where discrepancies exist between different data sets. Comparisons with predictions made with existing phase shifts show very good agreement with the dispersion-relation constrained phase shifts of the Karlsruhe group.

1 data table

Two targets (C=THIN) and (C=THICK) are used.


Single Diffraction Dissociation in $\pi^+ p$ and $K^+ p$ Interactions at 250-{GeV}/$c$

The EHS/NA22 collaboration Adamus, M. ; Azhinenko, I.V. ; Almeida, F.M.L., Jr. ; et al.
Z.Phys.C 39 (1988) 301, 1988.
Inspire Record 254506 DOI 10.17182/hepdata.15646

None

1 data table

No description provided.