None
No description provided.
No description provided.
We have studied nonstrange p¯−p interactions observed in 7000 pictures of the 80-in. Brookhaven National Laboratory hydrogen bubble chamber exposed to an antiproton beam with a momentum of 6.94 BeVc. The total cross section was measured to be 58.7±2.8 mb, and the elastic interaction cross section 14.2±1.2 mb. The elastic differential cross section for four-momentum transfers (−t)≤0.3 (BeVc)2 is well described by the exponential form dσeldt=(dσdt)t=0ebt, where b=13.1±1.1 (BeVc)−2. The single-pion production cross section is 4.0±0.9 mb. This channel proceeds 70% through resonance formation. N*(1238) isobar and anti-isobar formation dominates pion production in four- and six-pronged events; the double-isobar formation cross section in the final state pπ+p¯π− is 1.35±0.2 mb. Isobar production was observed to be consistent with the predictions of a dominant one-particle-exchange process. The pion-annihilation process, which has a cross section of 25±5 mb, shows substantial pion resonance formation.
'1'. '2'.
The analyzing power,$A_{oono}$, and the polarization transfer observables$K_{onno}$,$K_{os''so}$
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.
Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.
Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.
Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.
The strong coupling constant, αs, has been determined in hadronic decays of theZ0 resonance, using measurements of seven observables relating to global event shapes, energy correlatio
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Polarization transfer observables in π + d elastic scattering have been measured for the first time. Four polarization transfer parameters were determined at pion energies T π =134 MeV and 180 MeV at scattering angles θ π ,C.M. between 100° and 140° using a deuteron target polarized perpendicular to the scattering plane and a deuteron tensor polarimeter. The data are compared to different predictions from the SAID phase shift analysis and Faddeev calculations.
Systematic and statistical errors are added in quadrature.
Systematic and statistical errors are added in quadrature.
An experimental investigation of the structure of identified quark and gluon jets is presented. Observables related to both the global and internal structure of jets are measured; this allows for test
The measured jet broadening distributions (B) in quark and gluon jets seperately.
Measured distributions of -LN(Y2), where Y2 is the differential one-subjet rate, that is the value of the subjet scale parameter where 2 jets appear from the single jet.
The mean subjet multiplicity (-1) for gluon jets and quark jets for different values of the subject resolution parameter Y0.
A double scattering experiment, performed at the Paul-Scherrer-Institut (PSI), has measured a large variety of spin observables for free np elastic scattering from 260 to 535 MeV in the c.m. angle ran
Measurements of DNN with statistical errors only.
Measurements of DSL with statistical errors only.
Measurements of DSS with statistical errors only.
We present an angular analysis of the $B^{+}\rightarrow K^{\ast+}(\rightarrow K_{S}^{0}\pi^{+})\mu^{+}\mu^{-}$ decay using 9$\,\mbox{fb}^{-1}$ of $pp$ collision data collected with the LHCb experiment. For the first time, the full set of CP-averaged angular observables is measured in intervals of the dimuon invariant mass squared. Local deviations from Standard Model predictions are observed, similar to those in previous LHCb analyses of the isospin-partner $B^{0}\rightarrow K^{\ast0}\mu^{+}\mu^{-}$ decay. The global tension is dependent on which effective couplings are considered and on the choice of theory nuisance parameters.
Results for the CP-averaged observables Fl, Afb and S3–S9. The first uncertainties are statistical and the second systematic.
Results for the optimised observables FL and P1–P'8. The first uncertainties are statistical and the second systematic.
The CP-averaged observable Fl versus q2. The first (second) error bars represent the statistical (total) uncertainties.
Analyzing powers ( A y ) and spin-rotation-depolarization parameters ( D SS , D SL , D LS , D LL , D NN ) were determined for 500 MeV p + 2 H and p + 12 C inclusive quasielastic scattering at 10°, 15°, and 20° laboratory scattering angles. The p + 2 H data are consistent with the isospin-average of the proton-proton and proton-neutron scattering observables; the p + 12 C data are not. A relativistic plane wave impulse approximation calculation leads to better agreement with the p + 12 C spin-observables.
Inclusive quasielastic p deut measurements.
Inclusive quasielastic p c measurements.