None
Mean charged multiplicity for NSD events extrapolated to the full phase space.
Charged particle pseudorapidity density for NSD events at pseudorapidiy = 0.
Corrected charged particle multiplicity distribution for NSD events.
A comparison is made between the properties of the final state hadrons produced in 280 GeV μp interactions and ine+e− annihilation. The Lund model of hadroproduction is used as an aid in understanding the differences observed. The hadron distributions from μp ande+e− interactions are consistent with the quark parton model assumption of environmental independence, provided that the differences in heavy quark production and hard QCD effects in the two processes are taken into account. A comparison with aK+p experiment is also made. Values are also determined for the Lund model parameters σq = 0.410 ± 0.002 ± 0.020 GeV and σ′ = 0.29−0.15 −0.13+0.09+0.10 GeV, controlling the transverse momenta in fragmentation and intrinsic transverse momenta of the struck quark respectively.
With respect to the virtual photon axis.
With respect to the sphericity axis.
With respect to the thrust axis.
We compare the particle flow in the event plane of three-jet qq¯g (quark-antiquark-gluon) events with the particle flow in radiative annihilation events qq¯γ (quark-antiquark-photon) for similar kinematic configurations. In the angular region between quark and antiquark jet, we find a significant decrease in particle density for qq¯g as compared to qq¯γ. This effect is predicted in QCD as a result of destructive interference between soft-gluon radiation from quark, antiquark, and hard gluon.
No description provided.
No description provided.
A sample of two-jet events from the UA1 experiment at the CERN $p \bar{p}$ Collider has been used to study the fragmentation of high-energy quark and gluon jets into charged hadrons. Compared with lower-energy jets observed in $e^+ e^−$ and $pp$ collisions, the fragmentation function measured in the present experiment is softer (i.e. peaked to smaller values of z) and the mean internal transverse momentum is larger, mainly because of the effects of the QCD scaling violations. Using our knowledge of the quark and gluon structure functions in the proton, together with the QCD matrix elements, a statistical separation of quark and gluon jets is achieved within the present experiment. The fragmentation function for the gluon jets is found to be softer, and the angular spread of the fragmentation products larger, than is the case for quark jets.
No description provided.
The multiplicities per event of π ± and K ± are measured separately for e + e - annihilation into c c , b b , and light quark pairs at E cm=29 GeV. The K ± multiplicity is higher for heavy quark events than for light quark events. The π ± multiplicity and the π ± scaled differential cross section at low x = E beam/ E beam are found to be higher for b b events than for other events.
Numerical values requested from authors. Data given separately for (b bbar), (c cbar) and light quark jets.
Measured multiplicities for (b bbar) jets.
Measured multiplicities for (c cbar) jets.
The production of charmed D* mesons in e+e− annihilations at a center-of-mass energy of 29 GeV has been studied using the time-projection-chamber (TPC) detector at the SLAC storage ring PEP. The production cross section, fragmentation function, and forward-backward asymmetry due to electroweak effects are measured, and a limit on D0-D¯0 mixing is determined.
No description provided.
No description provided.
Direct photon production in hadronic events from e+e− annihilation has been studied at s=29 GeV with use of the MAC detector at the PEP storage ring. A charge asymmetry A=(−12.3±3.5)% is observed in the final-state jets. The cross section and the charge asymmetry are in good agreement with the predictions of the fractionally charged quark-parton model. Both the charge asymmetry and total yield have been used to determine values of quark charges. Limits have been established for anomalous sources of direct photons.
No description provided.
No description provided.
Results are presented on the transverse momentum distributions of charged hadrons in 280 GeV muon-proton deep inelastic interactions. The transverse momenta are defined relative to the accurately measured virtual photon direction and the experiment has almost complete angular acceptance for the final state hadrons. Significantly larger values of the average transverse momentum squared are found for the forward going hadrons than for the target remnants. This result, combined with a study of the rapidity region over which the transverse momentum is compensated, can be explained by a significant contribution from soft gluon radiation, but not by a large value of the primordial transverse momentum of the struck quark.
Errors given are statistical only.
Errors are statistical only.
Errors are statistical only.
Results are presented of an untagged e + e − → e + e − + π + π − experiment performed at PEP with the DELCO detector. In the invariant-mass range 0.7 ⩽ W ππ < 2.0 GeV/ c 2 , the QED e + e − background is identified and eliminated, and both the π + π − predictions and the μ + μ − and K + K − background substractions are normalized to the measurement of the e e + e − events. The results agree with a simple model of superposition and interference of the f 0 (1270) resonance, produced with helicity 2, with a Born-term continuum. From a fit of the model to the data, the radiative width of the f 0 is determined to be Γ f 0 → γγ = 2.70 ± 0.21 keV.
Data read from graph.
The diffractive dissociation of a 200-GeV/c π− beam into KS0KS0π+π−π− has been observed. The diffractive KS0KS0π+π−π− cross section is 1.59±0.78 μb. The ratio of the diffractive KS0KS0π+π−π− cross section to the diffractive KS0KS0π− cross section is 0.40±0.13, which is in good agreement with a diffractive-fragmentation-model prediction of 0.36. There is evidence for simultaneous production of K*− and K*+ in the diffractive KS0KS0π+π−π− sample. The K*+−KS0π−+ mass distribution shows an enhancement near 1.95 GeV.
No description provided.
No description provided.
No description provided.