The process $p\bar{p} \to \gamma$ + jet + X is studied using 1.0 $fb^{-1}$ of data collected by the D0 detector at the Fermilab Tevatron $p\bar{p}$ collider at a center-of-mass energy $\sqrt{s}$=1.96 TeV. Photons are reconstructed in the central rapidity region |$y^{\gamma}$|< 1.0 with transverse momenta in the range 30<$p^{\gamma}_T$<400 GeV while jets are reconstructed in either the central |$y^{jet}$|< 0.8 or forward 1.5 <|$y^{jet}$|<2.5 rapidity intervals with $p^{jet}_T$> 15 GeV. The differential cross section $d^3\sigma/dp^{\gamma}_T dy^\gamma dy^{jet}$ is measured as a function of $p^{\gamma}_T$ in four regions, differing by the relative orientations of the photon and the jet in rapidity. Ratios between the differential cross sections in each region are also presented. Next-to-leading order QCD predictions using different parameterizations of parton distribution functions and theoretical scale choices are compared to the data. The predictions do not simultaneously describe the measured normalization and Pt_gamma dependence of the cross section in any of the four measured regions.
Differential cross section for the region ABS(YRAP(JET)) < 0.8 and YRAP(GAMMA)*YRAP(JET) > 0.
Differential cross section for the region ABS(YRAP(JET)) < 0.8 and YRAP(GAMMA)*YRAP(JET) < 0.
Differential cross section for the region ABS(YRAP(JET)) 1.5 to 2.5 and YRAP(GAMMA)*YRAP(JET) > 0.
We present a measurement of the forward-backward charge asymmetry ($A_{FB}$) in $p\bar{p} \to Z/\gamma^{*}+X \to e^+e^-+X$ events at a center-of-mass energy of 1.96 TeV using 1.1 fb$^{-1}$ of data collected with the D0 detector at the Fermilab Tevatron collider. $A_{FB}$ is measured as a function of the invariant mass of the electron-positron pair, and found to be consistent with the standard model prediction. We use the $A_{FB}$ measurement to extract the effective weak mixing angle sin$^2\Theta^{eff}_W = 0.2327 \pm 0.0018 (stat.) \pm 0.0006 (syst.)$.
Unfolded forward-backward asymmetry as a function of the di-electron mass.
The production of low mass e+e- pairs for m_{e+e-} < 300 MeV/c^2 and 1 < p_T <5 GeV/c is measured in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV. Enhanced yield above hadronic sources is observed. Treating the excess as internal conversions, the invariant yield of direct photons is deduced. In central Au+Au collisions, the excess of direct photon yield over p+p is exponential in transverse momentum, with inverse slope T = 221 +/- 19 (stat) +/- 19 (syst) MeV. Hydrodynamical models with initial temperatures ranging from 300--600 MeV at times of ~ 0.6 - 0.15 fm/c after the collision are in qualitative agreement with the data. Lattice QCD predicts a phase transition to quark gluon plasma at ~ 170 MeV.
Electron pair mass distribution for Au+Au events for 1.0 < $p_T$ < 1.5 GeV/$c$.
Electron pair mass distribution for Au+Au events for 1.0 < $p_T$ < 1.5 GeV/$c$.
Electron pair mass distribution for Au+Au events for 1.0 < $p_T$ < 1.5 GeV/$c$.
We measure the ttbar production cross section in ppbar collisions at sqrt{s}=1.96 TeV in the lepton+jets channel. Two complementary methods discriminate between signal and background, b-tagging and a kinematic likelihood discriminant. Based on 0.9 fb-1 of data collected by the D0 detector at the Fermilab Tevatron Collider, we measure sigma_ttbar=7.62+/-0.85 pb, assuming the current world average m_t=172.6 GeV. We compare our cross section measurement with theory predictions to determine a value for the top quark mass of 170+/-7 GeV.
The combined result for the TOP TOPBAR production cross section at top quark mass of 175 GeV.. The second DSYS error is the uncertainty on the luminosity.
The cross section for TOP TOPBAR production at the world average top quark mass of 172.6 GeV.. Errors contain both statistics and systematics.
We present a measurement of the fraction of inclusive $W$+jets events produced with net charm quantum number $\pm1$, denoted $W$+$c$-jet, in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV using approximately 1~fb$^{-1}$ of data collected by the D0 detector at the Fermilab Tevatron Collider. We identify the $W$+jets events via the leptonic $W$ boson decays. Candidate $W$+$c$-jet events are selected by requiring a jet containing a muon in association with a reconstructed $W$ boson and exploiting the charge correlation between this muon and $W$ boson decay lepton to perform a nearly model-independent background subtraction. We measure the fraction of $W$+$c$-jet events in the inclusive $W$+jets sample for jet $p_{T}>20$ GeV and pseudorapidity $|\eta|<2.5$ to be 0.074$\pm0.019$(stat.)$\pm^{0.012}_{0.014}$(syst.), in agreement with theoretical predictions. The probability that background fluctuations could produce the observed fraction of $W$+$c$-jet events is estimated to be $2.5\times 10^{-4}$, which corresponds to a 3.5 $\sigma$ statistical significance.
Measured value of the W+ charm jet to W+ jet cross sections for W decay into the (E NU) channel for various jet PT ranges.
Measured value of the W+ charm jet to W+ jet cross sections for W decay into the (MU NU) channel for various jet PT ranges.
Measured value of the W+ charm jet to W+ jet cross sections for W decay into the (LEPTON NU) channel for various jet PT ranges.
Electroproduction of exclusive $\phi$ vector mesons has been studied with the CLAS detector in the kinematical range $1.6\leq Q^2\leq 3.8$ GeV$^{2}$, $0.0\leq t^{\prime}\leq 3.6$ GeV$^{2}$, and $2.0\leq W\leq 3.0$ GeV. The scaling exponent for the total cross section as $1/(Q^2+M_{\phi}^2)^n$ was determined to be $n=2.49\pm 0.33$. The slope of the four-momentum transfer $t'$ distribution is $b_{\phi}=0.98 \pm 0.17$ GeV$^{-2}$. The data are consistent with the assumption of s-channel helicity conservation (SCHC). Under this assumption, we determine the ratio of longitudinal to transverse cross sections to be $R=0.86 \pm 0.24$. A 2-gluon exchange model is able to reproduce the main features of the data.
Axis error includes +- 18.6/18.6 contribution.
Axis error includes +- 18.6/18.6 contribution.
Axis error includes +- 18.6/18.6 contribution.
A search for charmonium and other new states is performed in a study of exclusive initial-state-radiation production of D Dbar events from electron-positron annihilations at a center-of-mass energy of 10.58 GeV. The data sample corresponds to an integrated luminosity of 384 fb-1 and was recorded by the BABAR experiment at the PEP-II storage ring. The D Dbar mass spectrum shows clear evidence of the psi(3770) plus other structures near 3.9, 4.1, and 4.4 GeV/c^2. No evidence for Y(4260) -> D Dbar is observed, leading to an upper limit of B(Y(4260) -> D Dbar)/B(Y(4260) -> J/psi pi+ pi-) < 1.0 at 90 % confidence level.
Measured cross section for D0 DBAR0 and D+ D- production. Bins with no data are shown with a 'dash'.
We report on a measurement of the inclusive jet cross section in $p \bar{p}$ collisions at a center-of-mass energy $\sqrt s=$1.96 TeV using data collected by the D0 experiment at the Fermilab Tevatron Collider corresponding to an integrated luminosity of 0.70 fb$^{-1}$. The data cover jet transverse momenta from 50 GeV to 600 GeV and jet rapidities in the range -2.4 to 2.4. Detailed studies of correlations between systematic uncertainties in transverse momentum and rapidity are presented, and the cross section measurements are found to be in good agreement with next-to-leading order QCD calculations.
Measured inclusive jet cross section as a function of jet transverse momentum for absolute values of the jet rapidity from 0.0 to 0.4 for cone radius R = 0.7.
Measured inclusive jet cross section as a function of jet transverse momentum for absolute values of the jet rapidity from 0.4 to 0.8 for cone radius R = 0.7.
Measured inclusive jet cross section as a function of jet transverse momentum for absolute values of the jet rapidity from 0.8 to 1.2 for cone radius R = 0.7.
The PHENIX experiement has measured the electron-positron pair mass spectrum from 0 to 8 GeV/c^2 in p+p collisions at sqrt(s)=200 GeV. The contributions from light meson decays to e^+e^- pairs have been determined based on measurements of hadron production cross sections by PHENIX. They account for nearly all e^+e^- pairs in the mass region below 1 GeV/c^2. The e^+e^- pair yield remaining after subtracting these contributions is dominated by semileptonic decays of charmed hadrons correlated through flavor conservation. Using the spectral shape predicted by PYTHIA, we estimate the charm production cross section to be 544 +/- 39(stat) +/- 142(syst) +/- 200(model) \mu b, which is consistent with QCD calculations and measurements of single leptons by PHENIX.
Differential charm cross section at mid rapidity An additional +-39.5 microbarn error, due to the validity of the model used to extrapolate the data, is not included The contribution from beauty estimated to be 3.7 microbarn, has been subtracted. The c->e branching ratio used was 9.5 +-1.0%.
Total charm cross section An additional systemactic error of +- 200 microbarn, due to the validity of the model used to extrapolate the data, is not included. To obtain the total charm cross section, the differential charm cross section has been extrapolated to the whole rapidity range, using a HVQMNR rapidity distribution with aCTEQ5M PDF.
We report the first measurement of the cross section for Z boson pair production at a hadron collider. This result is based on a data sample corresponding to 1.9 fb-1 of integrated luminosity from ppbar collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. In the llll channel, we observe three ZZ candidates with an expected background of 0.096^{+0.092}_{-0.063} events. In the llnunu channel, we use a leading-order calculation of the relative ZZ and WW event probabilities to discriminate between signal and background. In the combination of llll and llnunu channels, we observe an excess of events with a probability of $5.1\times 10^{-6}$ to be due to the expected background. This corresponds to a significance of 4.4 standard deviations. The measured cross section is sigma(ppbar -> ZZ) = 1.4^{+0.7}_{-0.6} (stat.+syst.) pb, consistent with the standard model expectation.
Measured cross section. Errors are combined statistics and systematics.