Showing 10 of 23 results
Quark interactions with topological gluon configurations can induce chirality imbalance and local parity violation in quantum chromodynamics. This can lead to electric charge separation along the strong magnetic field in relativistic heavy-ion collisions -- the chiral magnetic effect (CME). We report measurements by the STAR collaboration of a CME-sensitive observable in $p$+Au and $d$+Au collisions at 200 GeV, where the CME is not expected, using charge-dependent pair correlations relative to a third particle. We observe strong charge-dependent correlations similar to those measured in heavy-ion collisions. This bears important implications for the interpretation of the heavy-ion data.
The $\gamma_{OS}$ correlators in p+Au collisions at $\sqrt{s_{NN}}=200$ GeV at RHIC as a function of multiplicity.
The $\gamma_{SS}$ correlators in p+Au collisions at $\sqrt{s_{NN}}=200$ GeV at RHIC as a function of multiplicity.
The $\gamma_{OS}$ correlators in d+Au collisions at $\sqrt{s_{NN}}=200$ GeV at RHIC as a function of multiplicity.
The $\gamma_{SS}$ correlators in du+Au collisions at $\sqrt{s_{NN}}=200$ GeV at RHIC as a function of multiplicity.
The correlation difference variable $\Delta \gamma = \gamma_{OS}-\gamma_{SS}$ in p+Au collisions at $\sqrt{s_{NN}}=200$ GeV at RHIC as a function of multiplicity.
The correlation difference variable $\Delta \gamma = \gamma_{OS}-\gamma_{SS}$ in d+Au collisions at $\sqrt{s_{NN}}=200$ GeV at RHIC as a function of multiplicity.
The measured two-particle cumulant $v_2\{2\}$ in p+Au collisions at $\sqrt{s_{NN}}=200$ GeV at RHIC as a function of multiplicity.
The measured two-particle cumulant $v_2\{2\}$ in d+Au collisions at $\sqrt{s_{NN}}=200$ GeV at RHIC as a function of multiplicity.
The scaled observable $\Delta{\gamma}_{scaled} = \Delta{\gamma} \times dN_{ch}/d\eta/v_{2}$ in p+Au collisions at $\sqrt{s_{NN}}=200$ GeV at RHIC as a function of multiplicity.
The scaled observable $\Delta{\gamma}_{scaled} = \Delta{\gamma} \times dN_{ch}/d\eta/v_{2}$ in d+Au collisions at $\sqrt{s_{NN}}=200$ GeV at RHIC as a function of multiplicity.
According to the CPT theorem, which states that the combined operation of charge conjugation, parity transformation and time reversal must be conserved, particles and their antiparticles should have the same mass and lifetime but opposite charge and magnetic moment. Here, we test CPT symmetry in a nucleus containing a strange quark, more specifically in the hypertriton. This hypernucleus is the lightest one yet discovered and consists of a proton, a neutron, and a $\Lambda$ hyperon. With data recorded by the STAR detector{\cite{TPC,HFT,TOF}} at the Relativistic Heavy Ion Collider, we measure the $\Lambda$ hyperon binding energy $B_{\Lambda}$ for the hypertriton, and find that it differs from the widely used value{\cite{B_1973}} and from predictions{\cite{2019_weak, 1995_weak, 2002_weak, 2014_weak}}, where the hypertriton is treated as a weakly bound system. Our results place stringent constraints on the hyperon-nucleon interaction{\cite{Hammer2002, STAR-antiH3L}}, and have implications for understanding neutron star interiors, where strange matter may be present{\cite{Chatterjee2016}}. A precise comparison of the masses of the hypertriton and the antihypertriton allows us to test CPT symmetry in a nucleus with strangeness for the first time, and we observe no deviation from the expected exact symmetry.
Measurements of relative mass-to-charge ratio differences between nuclei and antinuclei (d and antid)
Measurements of relative mass-to-charge ratio differences between nuclei and antinuclei (He and antiHe)
Measurements of relative mass-to-charge ratio differences between nuclei and antinuclei (hypertriton and antihypertriton)
Measurements of relative mass-to-charge ratio differences between nuclei and antinuclei (He - antiHe, STAR 2019)
Measured Lambda binding energy in the hypertriton compared to earlier results and theoretical calculations (earlier results)
Measured Lambda binding energy in the hypertriton compared to earlier results and theoretical calculations (current STAR measurements)
Measured Lambda binding energy in the hypertriton compared to earlier results and theoretical calculations (theoretical calculations)
Fluctuations of conserved quantities such as baryon number, charge, and strangeness are sensitive to the correlation length of the hot and dense matter created in relativistic heavy-ion collisions and can be used to search for the QCD critical point. We report the first measurements of the moments of net-kaon multiplicity distributions in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV. The collision centrality and energy dependence of the mean ($M$), variance ($\sigma^2$), skewness ($S$), and kurtosis ($\kappa$) for net-kaon multiplicity distributions as well as the ratio $\sigma^2/M$ and the products $S\sigma$ and $\kappa\sigma^2$ are presented. Comparisons are made with Poisson and negative binomial baseline calculations as well as with UrQMD, a transport model (UrQMD) that does not include effects from the QCD critical point. Within current uncertainties, the net-kaon cumulant ratios appear to be monotonic as a function of collision energy.
Raw $\Delta N_k$ distributions in Au+Au collisions at 7.7 GeV for 0–5%, 30–40%, and 70–80% collision centralities at midrapidity. The distributions are not corrected for the finite centrality bin width effect nor the reconstruction efficiency.
Raw $\Delta N_k$ distributions in Au+Au collisions at 11.5 GeV for 0–5%, 30–40%, and 70–80% collision centralities at midrapidity. The distributions are not corrected for the finite centrality bin width effect nor the reconstruction efficiency.
Raw $\Delta N_k$ distributions in Au+Au collisions at 14.5 GeV for 0–5%, 30–40%, and 70–80% collision centralities at midrapidity. The distributions are not corrected for the finite centrality bin width effect nor the reconstruction efficiency.
Raw $\Delta N_k$ distributions in Au+Au collisions at 19.6 GeV for 0–5%, 30–40%, and 70–80% collision centralities at midrapidity. The distributions are not corrected for the finite centrality bin width effect nor the reconstruction efficiency.
Raw $\Delta N_k$ distributions in Au+Au collisions at 27 GeV for 0–5%, 30–40%, and 70–80% collision centralities at midrapidity. The distributions are not corrected for the finite centrality bin width effect nor the reconstruction efficiency.
Raw $\Delta N_k$ distributions in Au+Au collisions at 39 GeV for 0–5%, 30–40%, and 70–80% collision centralities at midrapidity. The distributions are not corrected for the finite centrality bin width effect nor the reconstruction efficiency.
Raw $\Delta N_k$ distributions in Au+Au collisions at 62.4 GeV for 0–5%, 30–40%, and 70–80% collision centralities at midrapidity. The distributions are not corrected for the finite centrality bin width effect nor the reconstruction efficiency.
Raw $\Delta N_k$ distributions in Au+Au collisions at 200 GeV for 0–5%, 30–40%, and 70–80% collision centralities at midrapidity. The distributions are not corrected for the finite centrality bin width effect nor the reconstruction efficiency.
Collision centrality dependence of cumulants (C1, C2, C3, and C4) of $\Delta N_k$ distributions in Au+Au collisions at 7.7 GeV. The error bars are statistical uncertainties and the caps represent systematic uncertainties.
Collision centrality dependence of cumulants (C1, C2, C3, and C4) of $\Delta N_k$ distributions in Au+Au collisions at 11.5 GeV. The error bars are statistical uncertainties and the caps represent systematic uncertainties.
Collision centrality dependence of cumulants (C1, C2, C3, and C4) of $\Delta N_k$ distributions in Au+Au collisions at 14.5 GeV. The error bars are statistical uncertainties and the caps represent systematic uncertainties.
Collision centrality dependence of cumulants (C1, C2, C3, and C4) of $\Delta N_k$ distributions in Au+Au collisions at 19.6 GeV. The error bars are statistical uncertainties and the caps represent systematic uncertainties.
Collision centrality dependence of cumulants (C1, C2, C3, and C4) of $\Delta N_k$ distributions in Au+Au collisions at 27 GeV. The error bars are statistical uncertainties and the caps represent systematic uncertainties.
Collision centrality dependence of cumulants (C1, C2, C3, and C4) of $\Delta N_k$ distributions in Au+Au collisions at 39 GeV. The error bars are statistical uncertainties and the caps represent systematic uncertainties.
Collision centrality dependence of cumulants (C1, C2, C3, and C4) of $\Delta N_k$ distributions in Au+Au collisions at 62.4 GeV. The error bars are statistical uncertainties and the caps represent systematic uncertainties.
Collision centrality dependence of cumulants (C1, C2, C3, and C4) of $\Delta N_k$ distributions in Au+Au collisions at 200 GeV. The error bars are statistical uncertainties and the caps represent systematic uncertainties.
Collision centrality dependence of the $M/\sigma^2$ for $\Delta N_k$ distributions in Au+Au collisions at 7.7 GeV. The error bars are statistical uncertainties and the caps represent systematic uncertainties.
Collision centrality dependence of the $M/\sigma^2$ for $\Delta N_k$ distributions in Au+Au collisions at 11.5 GeV. The error bars are statistical uncertainties and the caps represent systematic uncertainties.
Collision centrality dependence of the $M/\sigma^2$ for $\Delta N_k$ distributions in Au+Au collisions at 14.5 GeV. The error bars are statistical uncertainties and the caps represent systematic uncertainties.
Collision centrality dependence of the $M/\sigma^2$ for $\Delta N_k$ distributions in Au+Au collisions at 19.6 GeV. The error bars are statistical uncertainties and the caps represent systematic uncertainties.
Collision centrality dependence of the $M/\sigma^2$ for $\Delta N_k$ distributions in Au+Au collisions at 27 GeV. The error bars are statistical uncertainties and the caps represent systematic uncertainties.
Collision centrality dependence of the $M/\sigma^2$ for $\Delta N_k$ distributions in Au+Au collisions at 39 GeV. The error bars are statistical uncertainties and the caps represent systematic uncertainties.
Collision centrality dependence of the $M/\sigma^2$ for $\Delta N_k$ distributions in Au+Au collisions at 62.4 GeV. The error bars are statistical uncertainties and the caps represent systematic uncertainties.
Collision centrality dependence of the $M/\sigma^2$ for $\Delta N_k$ distributions in Au+Au collisions at 200 GeV. The error bars are statistical uncertainties and the caps represent systematic uncertainties.
Collision centrality dependence of the $S\sigma$ for $\Delta N_k$ distributions in Au+Au collisions at 7.7 GeV. The error bars are statistical uncertainties and the caps represent systematic uncertainties.
Collision centrality dependence of the $S\sigma$ for $\Delta N_k$ distributions in Au+Au collisions at 11.5 GeV. The error bars are statistical uncertainties and the caps represent systematic uncertainties.
Collision centrality dependence of the $S\sigma$ for $\Delta N_k$ distributions in Au+Au collisions at 14.5 GeV. The error bars are statistical uncertainties and the caps represent systematic uncertainties.
Collision centrality dependence of the $S\sigma$ for $\Delta N_k$ distributions in Au+Au collisions at 19.6 GeV. The error bars are statistical uncertainties and the caps represent systematic uncertainties.
Collision centrality dependence of the $S\sigma$ for $\Delta N_k$ distributions in Au+Au collisions at 27 GeV. The error bars are statistical uncertainties and the caps represent systematic uncertainties.
Collision centrality dependence of the $S\sigma$ for $\Delta N_k$ distributions in Au+Au collisions at 39 GeV. The error bars are statistical uncertainties and the caps represent systematic uncertainties.
Collision centrality dependence of the $S\sigma$ for $\Delta N_k$ distributions in Au+Au collisions at 62.4 GeV. The error bars are statistical uncertainties and the caps represent systematic uncertainties.
Collision centrality dependence of the $S\sigma$ for $\Delta N_k$ distributions in Au+Au collisions at 200 GeV. The error bars are statistical uncertainties and the caps represent systematic uncertainties.
Collision centrality dependence of the $\kappa\sigma^2$ for $\Delta N_k$ distributions in Au+Au collisions at 7.7 GeV. The error bars are statistical uncertainties and the caps represent systematic uncertainties.
Collision centrality dependence of the $\kappa\sigma^2$ for $\Delta N_k$ distributions in Au+Au collisions at 11.5 GeV. The error bars are statistical uncertainties and the caps represent systematic uncertainties.
Collision centrality dependence of the $\kappa\sigma^2$ for $\Delta N_k$ distributions in Au+Au collisions at 14.5 GeV. The error bars are statistical uncertainties and the caps represent systematic uncertainties.
Collision centrality dependence of the $\kappa\sigma^2$ for $\Delta N_k$ distributions in Au+Au collisions at 19.6 GeV. The error bars are statistical uncertainties and the caps represent systematic uncertainties.
Collision centrality dependence of the $\kappa\sigma^2$ for $\Delta N_k$ distributions in Au+Au collisions at 27 GeV. The error bars are statistical uncertainties and the caps represent systematic uncertainties.
Collision centrality dependence of the $\kappa\sigma^2$ for $\Delta N_k$ distributions in Au+Au collisions at 39 GeV. The error bars are statistical uncertainties and the caps represent systematic uncertainties.
Collision centrality dependence of the $\kappa\sigma^2$ for $\Delta N_k$ distributions in Au+Au collisions at 62.4 GeV. The error bars are statistical uncertainties and the caps represent systematic uncertainties.
Collision centrality dependence of the $\kappa\sigma^2$ for $\Delta N_k$ distributions in Au+Au collisions at 200 GeV. The error bars are statistical uncertainties and the caps represent systematic uncertainties.
Collisions energy dependence of $M/\sigma^2$ for $\Delta N_k$ multiplicity distributions from 0–5% most central and 70–80% peripheral collisions in Au+Au collisions at \sqrt{s_{NN}} = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and 200 GeV. The error bars are statistical uncertainties and the caps represent systematic uncertainties.
Collisions energy dependence of $S\sigma$ for $\Delta N_k$ multiplicity distributions from 0–5% most central and 70–80% peripheral collisions in Au+Au collisions at \sqrt{s_{NN}} = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and 200 GeV. The error bars are statistical uncertainties and the caps represent systematic uncertainties.
Collisions energy dependence of $\kappa\sigma^2$ for $\Delta N_k$ multiplicity distributions from 0–5% most central and 70–80% peripheral collisions in Au+Au collisions at \sqrt{s_{NN}} = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and 200 GeV. The error bars are statistical uncertainties and the caps represent systematic uncertainties.
STAR measurements of dihadron azimuthal correlations ($\Delta\phi$) are reported in mid-central (20-60\%) Au+Au collisions at $\sqrt{s_{_{\rm NN}}}=200$ GeV as a function of the trigger particle's azimuthal angle relative to the event plane, $\phi_{s}=|\phi_{t}-\psi_{\rm EP}|$. The elliptic ($v_2$), triangular ($v_3$), and quadratic ($v_4$) flow harmonic backgrounds are subtracted using the Zero Yield At Minimum (ZYAM) method. The results are compared to minimum-bias d+Au collisions. It is found that a finite near-side ($|\Delta\phi|<\pi/2$) long-range pseudorapidity correlation (ridge) is present in the in-plane direction ($\phi_{s}\sim 0$). The away-side ($|\Delta\phi|>\pi/2$) correlation shows a modification from d+Au data, varying with $\phi_{s}$. The modification may be a consequence of pathlength-dependent jet-quenching and may lead to a better understanding of high-density QCD.
raw correlation, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 0.
raw correlation, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 1.
raw correlation, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 2.
raw correlation, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 3.
raw correlation, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 4.
raw correlation, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 5.
flow background with default flow, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 0.
flow background with default flow, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 1.
flow background with default flow, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 2.
flow background with default flow, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 3.
flow background with default flow, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 4.
flow background with default flow, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 5.
flow background with upper flow systematic uncertainty, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 0.
flow background with upper flow systematic uncertainty, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 1.
flow background with upper flow systematic uncertainty, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 2.
flow background with upper flow systematic uncertainty, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 3.
flow background with upper flow systematic uncertainty, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 4.
flow background with upper flow systematic uncertainty, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 5.
flow background with lower flow systematic uncertainty, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 0.
flow background with lower flow systematic uncertainty, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 1.
flow background with lower flow systematic uncertainty, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 2.
flow background with lower flow systematic uncertainty, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 3.
flow background with lower flow systematic uncertainty, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 4.
flow background with lower flow systematic uncertainty, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 5.
background-subtracted correlation, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 0.
background-subtracted correlation, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 1.
background-subtracted correlation, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 2.
background-subtracted correlation, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 3.
background-subtracted correlation, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 4.
background-subtracted correlation, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 5.
background-subtracted correlation with upper flow systematic uncertainty, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 0.
background-subtracted correlation with upper flow systematic uncertainty, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 1.
background-subtracted correlation with upper flow systematic uncertainty, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 2.
background-subtracted correlation with upper flow systematic uncertainty, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 3.
background-subtracted correlation with upper flow systematic uncertainty, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 4.
background-subtracted correlation with upper flow systematic uncertainty, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 5.
background-subtracted correlation with lower flow systematic uncertainty, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 0.
background-subtracted correlation with lower flow systematic uncertainty, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 1.
background-subtracted correlation with lower flow systematic uncertainty, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 2.
background-subtracted correlation with lower flow systematic uncertainty, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 3.
background-subtracted correlation with lower flow systematic uncertainty, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 4.
background-subtracted correlation with lower flow systematic uncertainty, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 5.
background normalization systematic uncertainty band, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 0.
background normalization systematic uncertainty band, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 1.
background normalization systematic uncertainty band, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 2.
background normalization systematic uncertainty band, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 3.
background normalization systematic uncertainty band, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 4.
background normalization systematic uncertainty band, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 5.
d+Au background-subtracted correlation, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1.
Parameters of Gaussian fit to the background subtracted dihadron correlations as a function of phi_s.
Parameters of Gaussian fit to the background subtracted dihadron correlations as a function of phi_s.
Parameters of Gaussian fit to the background subtracted dihadron correlations as a function of phi_s.
Parameters of Gaussian fit to the background subtracted dihadron correlations as a function of phi_s.
Parameters of Gaussian fit to the background subtracted dihadron correlations as a function of phi_s.
Parameters of Gaussian fit to the background subtracted dihadron correlations as a function of phi_s.
Parameters of Gaussian fit to the background subtracted dihadron correlations as a function of phi_s.
Parameters of Gaussian fit to the background subtracted dihadron correlations as a function of phi_s.
Parameters of Gaussian fit to the background subtracted dihadron correlations as a function of phi_s.
We report the beam energy (\sqrt s_{NN} = 7.7 - 200 GeV) and collision centrality dependence of the mean (M), standard deviation (\sigma), skewness (S), and kurtosis (\kappa) of the net-proton multiplicity distributions in Au+Au collisions. The measurements are carried out by the STAR experiment at midrapidity (|y| < 0.5) and within the transverse momentum range 0.4 < pT < 0.8 GeV/c in the first phase of the Beam Energy Scan program at the Relativistic Heavy Ion Collider. These measurements are important for understanding the Quantum Chromodynamic (QCD) phase diagram. The products of the moments, S\sigma and \kappa\sigma^{2}, are sensitive to the correlation length of the hot and dense medium created in the collisions and are related to the ratios of baryon number susceptibilities of corresponding orders. The products of moments are found to have values significantly below the Skellam expectation and close to expectations based on independent proton and anti-proton production. The measurements are compared to a transport model calculation to understand the effect of acceptance and baryon number conservation, and also to a hadron resonance gas model.
$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=7.7$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.
$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=11.5$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.
$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=19.6$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.
$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=27$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.
$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=39$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.
$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=62.4$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.
$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=200$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.
Centrality dependence of the cumulants of $\Delta N_p$ distributions for Au+Au collisions at $\sqrt{S_{NN}}=7.7$ GeV.
Centrality dependence of the cumulants of $\Delta N_p$ distributions for Au+Au collisions at $\sqrt{S_{NN}}=11.5$ GeV.
Centrality dependence of the cumulants of $\Delta N_p$ distributions for Au+Au collisions at $\sqrt{S_{NN}}=19.6$ GeV.
Centrality dependence of the cumulants of $\Delta N_p$ distributions for Au+Au collisions at $\sqrt{S_{NN}}=27$ GeV.
Centrality dependence of the cumulants of $\Delta N_p$ distributions for Au+Au collisions at $\sqrt{S_{NN}}=39$ GeV.
Centrality dependence of the cumulants of $\Delta N_p$ distributions for Au+Au collisions at $\sqrt{S_{NN}}=62.4$ GeV.
Centrality dependence of the cumulants of $\Delta N_p$ distributions for Au+Au collisions at $\sqrt{S_{NN}}=200$ GeV.
Centrality dependence of $S\sigma$/Skellam and $\kappa\sigma^2$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{S_{NN}}=7.7$ GeV.
Centrality dependence of $S\sigma$/Skellam and $\kappa\sigma^2$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{S_{NN}}=11.5$ GeV.
Centrality dependence of $S\sigma$/Skellam and $\kappa\sigma^2$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{S_{NN}}=19.6$ GeV.
Centrality dependence of $S\sigma$/Skellam and $\kappa\sigma^2$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{S_{NN}}=27$ GeV.
Centrality dependence of $S\sigma$/Skellam and $\kappa\sigma^2$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{S_{NN}}=39$ GeV.
Centrality dependence of $S\sigma$/Skellam and $\kappa\sigma^2$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{S_{NN}}=62.4$ GeV.
Centrality dependence of $S\sigma$/Skellam and $\kappa\sigma^2$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{S_{NN}}=200$ GeV.
Collision energy and centrality dependence of the net-proton $S\sigma$ and $\kappa\sigma^2$ from Au+Au and p+p collisions at RHIC.
Collision energy and centrality dependence of the net-proton $S\sigma$ and $\kappa\sigma^2$ from Au+Au and p+p collisions at RHIC.
Collision energy and centrality dependence of the net-proton $S\sigma$ and $\kappa\sigma^2$ from Au+Au and p+p collisions at RHIC.
Collision energy and centrality dependence of the net-proton $S\sigma$ and $\kappa\sigma^2$ from Au+Au and p+p collisions at RHIC.
Cumulants of net-proton distribution at $\sqrt{S_{NN}}=7.7$ GeV. (efficiency corrected).
Cumulants of net-proton distribution at $\sqrt{S_{NN}}=11.5$ GeV. (efficiency corrected).
Cumulants of net-proton distribution at $\sqrt{S_{NN}}=19.6$ GeV. (efficiency corrected).
Cumulants of net-proton distribution at $\sqrt{S_{NN}}=27$ GeV. (efficiency corrected).
Cumulants of net-proton distribution at $\sqrt{S_{NN}}=39$ GeV. (efficiency corrected).
Cumulants of net-proton distribution at $\sqrt{S_{NN}}=62.4$ GeV. (efficiency corrected).
Cumulants of net-proton distribution at $\sqrt{S_{NN}}=200$ GeV. (efficiency corrected).
Cumulants of proton distribution at $\sqrt{S_{NN}}=7.7$ GeV. (efficiency corrected).
Cumulants of proton distribution at $\sqrt{S_{NN}}=11.5$ GeV. (efficiency corrected).
Cumulants of proton distribution at $\sqrt{S_{NN}}=19.6$ GeV. (efficiency corrected).
Cumulants of proton distribution at $\sqrt{S_{NN}}=27$ GeV. (efficiency corrected).
Cumulants of proton distribution at $\sqrt{S_{NN}}=39$ GeV. (efficiency corrected).
Cumulants of proton distribution at $\sqrt{S_{NN}}=62.4$ GeV. (efficiency corrected).
Cumulants of proton distribution at $\sqrt{S_{NN}}=200$ GeV. (efficiency corrected).
Cumulants of anti-proton distribution at $\sqrt{S_{NN}}=7.7$ GeV. (efficiency corrected).
Cumulants of anti-proton distribution at $\sqrt{S_{NN}}=11.5$ GeV. (efficiency corrected).
Cumulants of anti-proton distribution at $\sqrt{S_{NN}}=19.6$ GeV. (efficiency corrected).
Cumulants of anti-proton distribution at $\sqrt{S_{NN}}=27$ GeV. (efficiency corrected).
Cumulants of anti-proton distribution at $\sqrt{S_{NN}}=39$ GeV. (efficiency corrected).
Cumulants of anti-proton distribution at $\sqrt{S_{NN}}=62.4$ GeV. (efficiency corrected).
Cumulants of anti-proton distribution at $\sqrt{S_{NN}}=200$ GeV. (efficiency corrected).
A study is reported of the same- and opposite-sign charge-dependent azimuthal correlations with respect to the event plane in Au+Au collisions at 200 GeV. The charge multiplicity asymmetries between the up/down and left/right hemispheres relative to the event plane are utilized. The contributions from statistical fluctuations and detector effects were subtracted from the (co-)variance of the observed charge multiplicity asymmetries. In the mid- to most-central collisions, the same- (opposite-) sign pairs are preferentially emitted in back-to-back (aligned on the same-side) directions. The charge separation across the event plane, measured by the difference, $\Delta$, between the like- and unlike-sign up/down $-$ left/right correlations, is largest near the event plane. The difference is found to be proportional to the event-by-event final-state particle ellipticity (via the observed second-order harmonic $v^{\rm obs}_{2}$), where $\Delta=(1.3\pm1.4({\rm stat})^{+4.0}_{-1.0}({\rm syst}))\times10^{-5}+(3.2\pm0.2({\rm stat})^{+0.4}_{-0.3}({\rm syst}))\times10^{-3}v^{\rm obs}_{2}$ for 20-40% Au+Au collisions. The implications for the proposed chiral magnetic effect are discussed.
Centrality dependences of the charge asymmetry dynamical correlations, $\delta\langle A^{2}\rangle$, and the positive and negative charge asymmetry correlations, $\delta\langle A_{+}A_{-}\rangle$. The asymmetries are calculated between hemispheres separated by the event plane (UD) and between those separated by the plane perpendicular to the event plane (LR). The asymmetry correlations are multiplied by the number of participants $N_{part}$. The upper (lower) shaded band shows half of the systematic uncertainty in the $\delta\langle A_{+}A_{-}\rangle$ ($\delta\langle A^{2}\rangle$); the larger of the UD\ and LR\ systematic uncertainties is drawn. The stars and triangles depict the $d$+Au results.
The correlation differences $\Delta\langle A^{2}\rangle=\delta\langle A^{2}_{ UD}\rangle-\delta\langle A^{2}_{ LR}\rangle$ and $\Delta\langle A_{+}A_{-}\rangle=\delta\langle A_{+}A_{-}\rangle_{ UD}-\delta\langle A_{+}A_{-}\rangle_{ LR}$, scaled by the number of participants $N_{part}$, as a function of $N_{part}$. The error bars are statistical, and the systematic uncertainties are shown in the shaded bands (upper band for $\Delta\langle A_{+}A_{-}\rangle$ and lower band for $\Delta\langle A^{2}\rangle$). Also shown as the lines are the linear-extrapolated values of $\Delta\langle A^{2}\rangle$ and $\Delta\langle A_{+}A_{-}\rangle$ corresponding to a perfect event-plane resolution. The star and triangle depict the $d$+Au results.
The $p_{T}$ dependence of the charge asymmetry dynamical correlations, $\delta\langle A^{2}\rangle$, and the positive and negative charge asymmetry correlations, $\delta\langle A_{+}A_{-}\rangle$. The data are from 20-40% central Au+Au collisions. The asymmetries are calculated between hemispheres separated by the event plane (UD) and between those separated by the plane perpendicular to the event plane (LR).
The correlation differences $\Delta\langle A^{2}\rangle=\delta\langle A^{2}_{UD}\rangle-\delta\langle A^{2}_{ LR}\rangle$ and $\Delta\langle A_{+}A_{-}\rangle=\delta\langle A_{+}A_{-}\rangle_{ UD}-\delta\langle A_{+}A_{-}\rangle_{ LR}$ as a function of $p_{T}$. The data are from 20-40% central (upper) and 0-20% central (lower) Au+Au collisions.
The charge asymmetry correlations $\delta\langle A^{2}\rangle$ (left panels) and $\delta\langle A_{+}A_{-}\rangle$ (center panels), and correlation differences $\Delta\langle A^{2}\rangle=\delta\langle A^{2}_{ UD}\rangle-\delta\langle A^{2}_{ LR}\rangle$ and $\Delta\langle A_{+}A_{-}\rangle=\delta\langle A_{+}A_{-}\rangle_{ UD}-\delta\langle A_{+}A_{-}\rangle_{ LR}$ (right panels), as a function of the azimuthal elliptic anisotropy of high-$p_{T}$ ($p_{T}>2$~GeV/$c$) particles (upper panels) and low-$p_{T}$ ($p_{T}<2$~GeV/$c$) particles (lower panels). Data are from 20-40% Au+Au collisions. The particle $p_{T}$ range of $0.15<p_{T}<2$~GeV/$c$ is used for both EP construction and asymmetry calculation.
The charge asymmetry correlations $\delta\langle A^{2}\rangle$ (left panels) and $\delta\langle A_{+}A_{-}\rangle$ (center panels), and correlation differences $\Delta\langle A^{2}\rangle=\delta\langle A^{2}_{ UD}\rangle-\delta\langle A^{2}_{ LR}\rangle$ and $\Delta\langle A_{+}A_{-}\rangle=\delta\langle A_{+}A_{-}\rangle_{ UD}-\delta\langle A_{+}A_{-}\rangle_{ LR}$ (right panels), as a function of the azimuthal elliptic anisotropy of high-$p_{T}$ ($p_{T}>2$~GeV/$c$) particles (upper panels) and low-$p_{T}$ ($p_{T}<2$~GeV/$c$) particles (lower panels). Data are from 20-40% Au+Au collisions. The particle $p_{T}$ range of $0.15<p_{T}<2$~GeV/$c$ is used for both EP construction and asymmetry calculation.
The wedge size dependences of charge multiplicity asymmetry correlations (upper panel), and their differences between out-of-plane and in-plane, $\Delta\langle A^{2}\rangle$ and $\Delta\langle A_{+}A_{-}\rangle$ (lower panel) for 20-40% central Au+Au collisions.
The wedge size dependences of charge multiplicity asymmetry correlations (upper panel), and their differences between out-of-plane and in-plane, $\Delta\langle A^{2}\rangle$ and $\Delta\langle A_{+}A_{-}\rangle$ (lower panel) for 20-40% central Au+Au collisions.
Charge multiplicity asymmetry correlations as a function of the wedge location, $\phi_{ w}$, in 20-40% central Au+Au collisions. The wedge size is $30^{\circ}$. The curves are the characteristic $\cos(2\phi_{ w}$) to guide the eye.
The wedge size dependence of the difference between the same-sign and opposite-sign, $\Delta\langle A^{2}\rangle-\Delta\langle A_{+}A_{-}\rangle$.
The values of $\Delta\langle A^{2}\rangle-\Delta\langle A_{+}A_{-}\rangle$, scaled by $N_{part}$, as a function of the measured average elliptic anisotropy $<v^{obs}_{2}}>$ in Au+Au collisions. The centrality bin number is labeled by each data point, 0 for 70-80% up to 8 for 0-5%.
$\Delta=\Delta\langle A^{2}\rangle-\Delta\langle A_{+}A_{-}\rangle$ as a function of $v^{obs}_{2}$, the event-by-event elliptical anisotropy of particle distributions relative to the second-harmonic event plane reconstructed from TPC tracks (left panel) and the first harmonic event plane reconstructed from the ZDC-SMD neutron signals (middle panel), in 20-40% central Au+Au collisions. Right panel: Average $\Delta$ for events with $|v^{obs}_{2}|<0.04$ relative to the TPC event plane as a function of centrality.
$\Delta=\Delta\langle A^{2}\rangle-\Delta\langle A_{+}A_{-}\rangle$ as a function of $v^{obs}_{2}$, the event-by-event elliptical anisotropy of particle distributions relative to the second-harmonic event plane reconstructed from TPC tracks (left panel) and the first harmonic event plane reconstructed from the ZDC-SMD neutron signals (middle panel), in 20-40% central Au+Au collisions. Right panel: Average $\Delta$ for events with $|v^{obs}_{2}|<0.04$ relative to the TPC event plane as a function of centrality.
$\Delta=\Delta\langle A^{2}\rangle-\Delta\langle A_{+}A_{-}\rangle$ as a function of $v^{obs}_{2}$, the event-by-event elliptical anisotropy of particle distributions relative to the second-harmonic event plane reconstructed from TPC tracks (left panel) and the first harmonic event plane reconstructed from the ZDC-SMD neutron signals (middle panel), in 20-40% central Au+Au collisions. Right panel: Average $\Delta$ for events with $|v^{obs}_{2}|<0.04$ relative to the TPC event plane as a function of centrality.
Left panel: $\Delta\langle A^{2}\rangle$ and $\Delta\langle A_{+}A_{-}\rangle$ as a function of $v^{obs}_{2}$ with a random EP in 20-40% Au+Au collisions. The lines depict the results with reconstructed EP lower right panel for comparison. Middle panel: The differences in $\Delta\langle A^{2}\rangle$ and $\Delta\langle A_{+}A_{-}\rangle$ between the reconstructed EP and random EP results, respectively. Right panel: $\Delta=\Delta\langle A^{2}\rangle-\Delta\langle A_{+}A_{-}\rangle$ as a function of $v^{obs}_{2}$ with a random EP (open triangles).
Left panel: $\Delta\langle A^{2}\rangle$ and $\Delta\langle A_{+}A_{-}\rangle$ as a function of $v^{obs}_{2}$ with a random EP in 20-40% Au+Au collisions. The lines depict the results with reconstructed EP lower right panel for comparison. Middle panel: The differences in $\Delta\langle A^{2}\rangle$ and $\Delta\langle A_{+}A_{-}\rangle$ between the reconstructed EP and random EP results, respectively. Right panel: $\Delta=\Delta\langle A^{2}\rangle-\Delta\langle A_{+}A_{-}\rangle$ as a function of $v^{obs}_{2}$ with a random EP (open triangles).
Left panel: $\Delta\langle A^{2}\rangle$ and $\Delta\langle A_{+}A_{-}\rangle$ as a function of $v^{obs}_{2}$ with a random EP in 20-40% Au+Au collisions. The lines depict the results with reconstructed EP lower right panel for comparison. Middle panel: The differences in $\Delta\langle A^{2}\rangle$ and $\Delta\langle A_{+}A_{-}\rangle$ between the reconstructed EP and random EP results, respectively. Right panel: $\Delta=\Delta\langle A^{2}\rangle-\Delta\langle A_{+}A_{-}\rangle$ as a function of $v^{obs}_{2}$ with a random EP (open triangles).
The correlation differences, $\langle A^{2}_{ LR}\rangle-\langle A^{2}_{ UD}\rangle$ and $\langle A_{+}A_{-}\rangle_{ LR}-\langle A_{+}A_{-}\rangle_{ UD}$, scaled by the number of participants $(\pi/4)^2 N_{part}$. Also shown are $\langle \cos(\phi_{\alpha}+\phi_{\beta}-2\phi_{c})\rangle/v_{2,c} \approx \langle \cos(\phi_{\alpha}+\phi_{\beta}-2\psi_{ RP}) \rangle$ of same- and opposite-sign particle pairs ($\alpha$ and $\beta$) calculated from particles used for the charge asymmetry correlations with particle $c$ from those used for EP construction. The upper panel shows the default results where particles are divided according to $\eta$; the lower panel shows results with particles divided randomly into two halves and compared to published correlators.
The correlation differences, $\langle A^{2}_{ LR}\rangle-\langle A^{2}_{ UD}\rangle$ and $\langle A_{+}A_{-}\rangle_{ LR}-\langle A_{+}A_{-}\rangle_{ UD}$, scaled by the number of participants $(\pi/4)^2 N_{part}$. Also shown are $\langle \cos(\phi_{\alpha}+\phi_{\beta}-2\phi_{c})\rangle/v_{2,c} \approx \langle \cos(\phi_{\alpha}+\phi_{\beta}-2\psi_{ RP}) \rangle$ of same- and opposite-sign particle pairs ($\alpha$ and $\beta$) calculated from particles used for the charge asymmetry correlations with particle $c$ from those used for EP construction. The upper panel shows the default results where particles are divided according to $\eta$; the lower panel shows results with particles divided randomly into two halves and compared to published correlators.
Upper panel: Positively charged particle multiplicity distributions versus the azimuthal angle, $\phi$, in 30-40% central Au+Au collisions. The data are shown separately for $\eta>0$ and $\eta<0$. The magnetic polarities of the STAR magnet have been summed and the $p_{T}$ is integrated over the range $0.15<p_{T}<2$~GeV/$c$. The inverse of these distributions, properly normalized, were used to correct for the track efficiency versus $\phi$. Lower panel: Reconstructed event-plane azimuthal angle distributions in 30-40% central Au+Au collisions. Particles within $0.15 < p_{T} < 2$~GeV/$c$ from $\eta<0$ and $\eta>0$ were used separately to reconstruct the EP.
Upper panel: Positively charged particle multiplicity distributions versus the azimuthal angle, $\phi$, in 30-40% central Au+Au collisions. The data are shown separately for $\eta>0$ and $\eta<0$. The magnetic polarities of the STAR magnet have been summed and the $p_{T}$ is integrated over the range $0.15<p_{T}<2$~GeV/$c$. The inverse of these distributions, properly normalized, were used to correct for the track efficiency versus $\phi$. Lower panel: Reconstructed event-plane azimuthal angle distributions in 30-40% central Au+Au collisions. Particles within $0.15 < p_{T} < 2$~GeV/$c$ from $\eta<0$ and $\eta>0$ were used separately to reconstruct the EP.
The relative charge asymmetry correlations, $\langle A_{+}A_{-}\rangle_{ UD}/\langle A_{+}A_{-}\rangle_{ LR}$, as a function of the number of participants, $N_{part}$, for four combinations of $\eta$ ranges used for EP reconstruction and asymmetry calculation.
The asymmetry correlations, $\langle A^{2}_{+,{ UD}}\rangle$ (left panel), $\langle A^{2}_{-,{ UD}}\rangle$ (middle panel), and $\langle A_{+}A_{-}\rangle_{ UD}$ (right panel), multiplied by the number of participants $N_{part}$, before and after the corrections for the $\phi$-dependent acceptance $\times$ efficiency. The colored curves are the corresponding statistical fluctuations and detector effects. The results are separated for $\eta>0$ and $\eta<0$. Only $\eta>0$ is shown for $\langle A^{2}_{+,{ UD}}\rangle$ and $\eta<0$ for $\langle A^{2}_{-,{ UD}}\rangle$ for clarity.
The asymmetry correlations, $\langle A^{2}_{+,{ UD}}\rangle$ (left panel), $\langle A^{2}_{-,{ UD}}\rangle$ (middle panel), and $\langle A_{+}A_{-}\rangle_{ UD}$ (right panel), multiplied by the number of participants $N_{part}$, before and after the corrections for the $\phi$-dependent acceptance $\times$ efficiency. The colored curves are the corresponding statistical fluctuations and detector effects. The results are separated for $\eta>0$ and $\eta<0$. Only $\eta>0$ is shown for $\langle A^{2}_{+,{ UD}}\rangle$ and $\eta<0$ for $\langle A^{2}_{-,{ UD}}\rangle$ for clarity.
The asymmetry correlations, $\langle A^{2}_{+,{ UD}}\rangle$ (left panel), $\langle A^{2}_{-,{ UD}}\rangle$ (middle panel), and $\langle A_{+}A_{-}\rangle_{ UD}$ (right panel), multiplied by the number of participants $N_{part}$, before and after the corrections for the $\phi$-dependent acceptance $\times$ efficiency. The colored curves are the corresponding statistical fluctuations and detector effects. The results are separated for $\eta>0$ and $\eta<0$. Only $\eta>0$ is shown for $\langle A^{2}_{+,{ UD}}\rangle$ and $\eta<0$ for $\langle A^{2}_{-,{ UD}}\rangle$ for clarity.
Left panel: Statistical fluctuation and detector effects in the charge asymmetry variance (multiplied by the number of participants $N_{part}$) from the $\eta<0$ region. The dotted curve shows the $1/N$ approximation, the dashed curve shows the statistical fluctuations $\langle A^{2}_{-,{ LR,stat}}\rangle$ obtained by the (50-50) method (see the text). The solid curve connecting the solid points shows the net effect of the statistical fluctuations and detector non-uniformities, $\langle A^{2}_{-,{ LR,stat+det}}\rangle$, obtained by the adding-$\pi$ method, and the crosses shows the same but obtained from the ``scramble'' method. See the text for details. Middle panel: The statistical fluctuation effects relative to the $1/N$ approximation (thin curves) and the effects due to the imperfect detector (thick curves). The dashed curves are for the region $\eta>0$ and the solid curves are for $\eta<0$. Right panel: The ratios of the statistical fluctuation and detector effects $\langle A^{2}_{+,{ LR,stat+det}}\rangle/\langle A^{2}_{-,{ LR,stat+det}}\rangle$ and $\langle A^{2}_{+,{ UD,stat+det}}\rangle/\langle A^{2}_{+,{ LR,stat+det}}\rangle$, separately for the $\eta>0$ and $\eta<0$ regions. The $\phi$-acceptance correction was applied for the results in this figure.
Left panel: Statistical fluctuation and detector effects in the charge asymmetry variance (multiplied by the number of participants $N_{part}$) from the $\eta<0$ region. The dotted curve shows the $1/N$ approximation, the dashed curve shows the statistical fluctuations $\langle A^{2}_{-,{ LR,stat}}\rangle$ obtained by the (50-50) method (see the text). The solid curve connecting the solid points shows the net effect of the statistical fluctuations and detector non-uniformities, $\langle A^{2}_{-,{ LR,stat+det}}\rangle$, obtained by the adding-$\pi$ method, and the crosses shows the same but obtained from the ``scramble'' method. See the text for details. Middle panel: The statistical fluctuation effects relative to the $1/N$ approximation (thin curves) and the effects due to the imperfect detector (thick curves). The dashed curves are for the region $\eta>0$ and the solid curves are for $\eta<0$. Right panel: The ratios of the statistical fluctuation and detector effects $\langle A^{2}_{+,{ LR,stat+det}}\rangle/\langle A^{2}_{-,{ LR,stat+det}}\rangle$ and $\langle A^{2}_{+,{ UD,stat+det}}\rangle/\langle A^{2}_{+,{ LR,stat+det}}\rangle$, separately for the $\eta>0$ and $\eta<0$ regions. The $\phi$-acceptance correction was applied for the results in this figure.
Left panel: Statistical fluctuation and detector effects in the charge asymmetry variance (multiplied by the number of participants $N_{part}$) from the $\eta<0$ region. The dotted curve shows the $1/N$ approximation, the dashed curve shows the statistical fluctuations $\langle A^{2}_{-,{ LR,stat}}\rangle$ obtained by the (50-50) method (see the text). The solid curve connecting the solid points shows the net effect of the statistical fluctuations and detector non-uniformities, $\langle A^{2}_{-,{ LR,stat+det}}\rangle$, obtained by the adding-$\pi$ method, and the crosses shows the same but obtained from the ``scramble'' method. See the text for details. Middle panel: The statistical fluctuation effects relative to the $1/N$ approximation (thin curves) and the effects due to the imperfect detector (thick curves). The dashed curves are for the region $\eta>0$ and the solid curves are for $\eta<0$. Right panel: The ratios of the statistical fluctuation and detector effects $\langle A^{2}_{+,{ LR,stat+det}}\rangle/\langle A^{2}_{-,{ LR,stat+det}}\rangle$ and $\langle A^{2}_{+,{ UD,stat+det}}\rangle/\langle A^{2}_{+,{ LR,stat+det}}\rangle$, separately for the $\eta>0$ and $\eta<0$ regions. The $\phi$-acceptance correction was applied for the results in this figure.
The asymmetry correlations, $\langle A^{2}_{+,{ UD}}\rangle$ (left panel), $\langle A^{2}_{-,{ UD}}\rangle$ (middle panel), and $\langle A_{+}A_{-}\rangle_{ UD}$ (right panel), multiplied by the number of participants $N_{part}$, separately for $\eta>0$ and $\eta<0$. The star and triangle depict the results from $d$+Au collisions. The net effects of the statistical fluctuations and detector non-uniformities are shown as the curves.
The asymmetry correlations, $\langle A^{2}_{+,{ UD}}\rangle$ (left panel), $\langle A^{2}_{-,{ UD}}\rangle$ (middle panel), and $\langle A_{+}A_{-}\rangle_{ UD}$ (right panel), multiplied by the number of participants $N_{part}$, separately for $\eta>0$ and $\eta<0$. The star and triangle depict the results from $d$+Au collisions. The net effects of the statistical fluctuations and detector non-uniformities are shown as the curves.
The asymmetry correlations, $\langle A^{2}_{+,{ UD}}\rangle$ (left panel), $\langle A^{2}_{-,{ UD}}\rangle$ (middle panel), and $\langle A_{+}A_{-}\rangle_{ UD}$ (right panel), multiplied by the number of participants $N_{part}$, separately for $\eta>0$ and $\eta<0$. The star and triangle depict the results from $d$+Au collisions. The net effects of the statistical fluctuations and detector non-uniformities are shown as the curves.
The statistical and detector effect subtracted asymmetry correlations, $\delta\langle A^{2}_{+,0^{\circ}\pm\Delta\phi_{w}}\rangle$ (left panel), $\delta\langle A^{2}_{-,0^{\circ}\pm\Delta\phi_{w}}\rangle$ (middle panel), and $\delta\langle A_{+}A_{-}\rangle_{ LR}$ (right panel), multiplied by the number of participants $N_{part}$, before and after the corrections for the $\phi$-dependent acceptance $\times$ efficiency.
The statistical and detector effect subtracted asymmetry correlations, $\delta\langle A^{2}_{+,0^{\circ}\pm\Delta\phi_{w}}\rangle$ (left panel), $\delta\langle A^{2}_{-,0^{\circ}\pm\Delta\phi_{w}}\rangle$ (middle panel), and $\delta\langle A_{+}A_{-}\rangle_{ LR}$ (right panel), multiplied by the number of participants $N_{part}$, before and after the corrections for the $\phi$-dependent acceptance $\times$ efficiency.
The statistical and detector effect subtracted asymmetry correlations, $\delta\langle A^{2}_{+,0^{\circ}\pm\Delta\phi_{w}}\rangle$ (left panel), $\delta\langle A^{2}_{-,0^{\circ}\pm\Delta\phi_{w}}\rangle$ (middle panel), and $\delta\langle A_{+}A_{-}\rangle_{ LR}$ (right panel), multiplied by the number of participants $N_{part}$, before and after the corrections for the $\phi$-dependent acceptance $\times$ efficiency.
Dynamical charge asymmetry variance after removing the statistical and detector effects, $\delta\langle A^{2}_{\pm,{ LR}}\rangle=\langle A^{2}_{\pm,{ LR}}\rangle-\langle A^{2}_{\pm,{ LR,stat+det}}\rangle$, scaled by the number of participants $N_{part}$. The results are consistent between positive and negative $\eta$ regions and between positive and negative charges.
The second-harmonic event-plane resolution of sub-events ($\eta<0$ and $\eta>0$) as a function of the number of participants.
Charge multiplicity asymmetry correlations, $\delta\langle A^{2}\rangle$ (left panel) and $\delta\langle A_{+}A_{-}\rangle$ (middle panel), and their differences between UD\ and LR\ (right panel) as a function of the event-plane resolution $\epsilon_{ EP}(f)=\sqrt{\mean{\cos2(\psi_{{ EP},\eta>0}(f)-\psi_{{ EP},\eta<0}(f))}}$ in 20-30% central Au+Au collisions. The solid lines are free linear fits to the data, while the dashed lines are linear fits with the intercept fixed to zero at $\epsilon_{ EP}(f)=0$.
Charge multiplicity asymmetry correlations, $\delta\langle A^{2}\rangle$ (left panel) and $\delta\langle A_{+}A_{-}\rangle$ (middle panel), and their differences between UD\ and LR\ (right panel) as a function of the event-plane resolution $\epsilon_{ EP}(f)=\sqrt{\mean{\cos2(\psi_{{ EP},\eta>0}(f)-\psi_{{ EP},\eta<0}(f))}}$ in 20-30% central Au+Au collisions. The solid lines are free linear fits to the data, while the dashed lines are linear fits with the intercept fixed to zero at $\epsilon_{ EP}(f)=0$.
TCharge multiplicity asymmetry correlations, $\delta\langle A^{2}\rangle$ (left panel) and $\delta\langle A_{+}A_{-}\rangle$ (middle panel), and their differences between UD\ and LR\ (right panel) as a function of the event-plane resolution $\epsilon_{ EP}(f)=\sqrt{\mean{\cos2(\psi_{{ EP},\eta>0}(f)-\psi_{{ EP},\eta<0}(f))}}$ in 20-30% central Au+Au collisions. The solid lines are free linear fits to the data, while the dashed lines are linear fits with the intercept fixed to zero at $\epsilon_{ EP}(f)=0$.
The TPC second-harmonic (upper left) and ZDC-SMD first harmonic (upper right) event-plane resolution as a function of $v^{obs}_{2}$ in 20-40% central Au+Au collisions. The TPC second-harmonic (lower left) and ZDC-SMD first harmonic (lower right) event-plane resolution for events with $|v^{obs}_{2}|<0.04$ as a function of centrality.
The TPC second-harmonic (upper left) and ZDC-SMD first harmonic (upper right) event-plane resolution as a function of $v^{obs}_{2}$ in 20-40% central Au+Au collisions. The TPC second-harmonic (lower left) and ZDC-SMD first harmonic (lower right) event-plane resolution for events with $|v^{obs}_{2}|<0.04$ as a function of centrality.
The TPC second-harmonic (upper left) and ZDC-SMD first harmonic (upper right) event-plane resolution as a function of $v^{obs}_{2}$ in 20-40% central Au+Au collisions. The TPC second-harmonic (lower left) and ZDC-SMD first harmonic (lower right) event-plane resolution for events with $|v^{obs}_{2}|<0.04$ as a function of centrality.
The TPC second-harmonic (upper left) and ZDC-SMD first harmonic (upper right) event-plane resolution as a function of $v^{obs}_{2}$ in 20-40% central Au+Au collisions. The TPC second-harmonic (lower left) and ZDC-SMD first harmonic (lower right) event-plane resolution for events with $|v^{obs}_{2}|<0.04$ as a function of centrality.
Measurements of the anisotropy parameter v_2 of identified hadrons (pions, kaons, and protons) as a function of centrality, transverse momentum p_T, and transverse kinetic energy KE_T at midrapidity (|\eta|<0.35) in Au+Au collisions at sqrt(s_NN) = 200 GeV are presented. Pions and protons are identified up to p_T = 6 GeV/c, and kaons up to p_T = 4 GeV/c, by combining information from time-of-flight and aerogel Cherenkov detectors in the PHENIX Experiment. The scaling of v_2 with the number of valence quarks (n_q) has been studied in different centrality bins as a function of transverse momentum and transverse kinetic energy. A deviation from previously observed quark-number scaling is observed at large values of KE_T/n_q in noncentral Au+Au collisions (20--60%), but this scaling remains valid in central collisions (0--10%).
Identified hadron $v_2$ in central (0–20% centrality, left panels) Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Panels (a) and (b) show $v_2$ as a function of transverse momentum $p_T$. The $v_2$ of all species for centrality 0–20% has been scaled up by a factor of 1.6 for better comparison with results of 20–60% centrality. The error bars (shaded boxes) represent the statistical (systematic) uncertainties. The systematic uncertainties shown are type A and B only.
Identified hadron $v_2$ in central (0–20% centrality, left panels) Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Panels (a) and (b) show $v_2$ as a function of transverse momentum $p_T$. The $v_2$ of all species for centrality 0–20% has been scaled up by a factor of 1.6 for better comparison with results of 20–60% centrality. The error bars (shaded boxes) represent the statistical (systematic) uncertainties. The systematic uncertainties shown are type A and B only.
Identified hadron $v_2$ in central (0–20% centrality, left panels) Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Panels (a) and (b) show $v_2$ as a function of transverse momentum $p_T$. The $v_2$ of all species for centrality 0–20% has been scaled up by a factor of 1.6 for better comparison with results of 20–60% centrality. The error bars (shaded boxes) represent the statistical (systematic) uncertainties. The systematic uncertainties shown are type A and B only.
Identified hadron $v_2$ in midcentral (20–60%, right panels) Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Panels (a) and (b) show $v_2$ as a function of transverse momentum $p_T$. The $v_2$ of all species for centrality 0–20% has been scaled up by a factor of 1.6 for better comparison with results of 20–60% centrality. The error bars (shaded boxes) represent the statistical (systematic) uncertainties. The systematic uncertainties shown are type A and B only.
Identified hadron $v_2$ in midcentral (20–60%, right panels) Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Panels (a) and (b) show $v_2$ as a function of transverse momentum $p_T$. The $v_2$ of all species for centrality 0–20% has been scaled up by a factor of 1.6 for better comparison with results of 20–60% centrality. The error bars (shaded boxes) represent the statistical (systematic) uncertainties. The systematic uncertainties shown are type A and B only.
Identified hadron $v_2$ in midcentral (20–60%, right panels) Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Panels (a) and (b) show $v_2$ as a function of transverse momentum $p_T$. The $v_2$ of all species for centrality 0–20% has been scaled up by a factor of 1.6 for better comparison with results of 20–60% centrality. The error bars (shaded boxes) represent the statistical (systematic) uncertainties. The systematic uncertainties shown are type A and B only.
The quark-number-scaled $v_2$ ($v_2/n_q$) of identified hadrons are shown as a function of the kinetic energy per quark, KE$_T/n_q$ in 0–10% centrality [panel (a)] in Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. The error bars (shaded boxes) represent the statistical (systematic) uncertainties. The systematic uncertainties shown are type A and B only.
The quark-number-scaled $v_2$ ($v_2/n_q$) of identified hadrons are shown as a function of the kinetic energy per quark, KE$_T/n_q$ in 0–10% centrality [panel (a)] in Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. The error bars (shaded boxes) represent the statistical (systematic) uncertainties. The systematic uncertainties shown are type A and B only.
The quark-number-scaled $v_2$ ($v_2/n_q$) of identified hadrons are shown as a function of the kinetic energy per quark, KE$_T/n_q$ in 0–10% centrality [panel (a)] in Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. The error bars (shaded boxes) represent the statistical (systematic) uncertainties. The systematic uncertainties shown are type A and B only.
The quark-number-scaled $v_2$ ($v_2/n_q$) of identified hadrons are shown as a function of the kinetic energy per quark, KE$_T/n_q$ in 10–20% centrality [panel (b)] in Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. The error bars (shaded boxes) represent the statistical (systematic) uncertainties. The systematic uncertainties shown are type A and B only.
The quark-number-scaled $v_2$ ($v_2/n_q$) of identified hadrons are shown as a function of the kinetic energy per quark, KE$_T/n_q$ in 10–20% centrality [panel (b)] in Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. The error bars (shaded boxes) represent the statistical (systematic) uncertainties. The systematic uncertainties shown are type A and B only.
The quark-number-scaled $v_2$ ($v_2/n_q$) of identified hadrons are shown as a function of the kinetic energy per quark, KE$_T/n_q$ in 10–20% centrality [panel (b)] in Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. The error bars (shaded boxes) represent the statistical (systematic) uncertainties. The systematic uncertainties shown are type A and B only.
The quark-number-scaled $v_2$ ($v_2/n_q$) of identified hadrons are shown as a function of the kinetic energy per quark, KE$_T/n_q$ in 20–40% centrality [panel (c)] in Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. The error bars (shaded boxes) represent the statistical (systematic) uncertainties. The systematic uncertainties shown are type A and B only.
The quark-number-scaled $v_2$ ($v_2/n_q$) of identified hadrons are shown as a function of the kinetic energy per quark, KE$_T/n_q$ in 20–40% centrality [panel (c)] in Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. The error bars (shaded boxes) represent the statistical (systematic) uncertainties. The systematic uncertainties shown are type A and B only.
The quark-number-scaled $v_2$ ($v_2/n_q$) of identified hadrons are shown as a function of the kinetic energy per quark, KE$_T/n_q$ in 20–40% centrality [panel (c)] in Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. The error bars (shaded boxes) represent the statistical (systematic) uncertainties. The systematic uncertainties shown are type A and B only.
The quark-number-scaled $v_2$ ($v_2/n_q$) of identified hadrons are shown as a function of the kinetic energy per quark, KE$_T/n_q$ in 40–60% centrality [panel (d)] in Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. The error bars (shaded boxes) represent the statistical (systematic) uncertainties. The systematic uncertainties shown are type A and B only.
The quark-number-scaled $v_2$ ($v_2/n_q$) of identified hadrons are shown as a function of the kinetic energy per quark, KE$_T/n_q$ in 40–60% centrality [panel (d)] in Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. The error bars (shaded boxes) represent the statistical (systematic) uncertainties. The systematic uncertainties shown are type A and B only.
The quark-number-scaled $v_2$ ($v_2/n_q$) of identified hadrons are shown as a function of the kinetic energy per quark, KE$_T/n_q$ in 40–60% centrality [panel (d)] in Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. The error bars (shaded boxes) represent the statistical (systematic) uncertainties. The systematic uncertainties shown are type A and B only.
The quark-number-scaled $v_2$ ($v_2/n_q$) of identified hadrons are shown as a function of the kinetic energy per quark, KE$_T/n_q$ in 10–40% centrality [panel (b)] in Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. The $v_2$ of $\Lambda$ and K$^0_S$ are measured by STAR collaboration [21]. The error bars (open boxes) represent the statistical (systematic) uncertainties. The systematic uncertainties shown on the results from this study are type A and B only.
The quark-number-scaled $v_2$ ($v_2/n_q$) of identified hadrons are shown as a function of the kinetic energy per quark, KE$_T/n_q$ in 10–40% centrality [panel (b)] in Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. The $v_2$ of $\Lambda$ and K$^0_S$ are measured by STAR collaboration [21]. The error bars (open boxes) represent the statistical (systematic) uncertainties. The systematic uncertainties shown on the results from this study are type A and B only.
The quark-number-scaled $v_2$ ($v_2/n_q$) of identified hadrons are shown as a function of the kinetic energy per quark, KE$_T/n_q$ in 10–40% centrality [panel (b)] in Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. The $v_2$ of $\Lambda$ and K$^0_S$ are measured by STAR collaboration [21]. The error bars (open boxes) represent the statistical (systematic) uncertainties. The systematic uncertainties shown on the results from this study are type A and B only.
Dihadron azimuthal correlations containing a high transverse momentum ($p_T$) trigger particle are sensitive to the properties of the nuclear medium created at RHIC through the strong interactions occurring between the traversing parton and the medium, i.e. jet-quenching. Previous measurements revealed a strong modification to dihadron azimuthal correlations in Au+Au collisions with respect to p+p and d+Au collisions. The modification increases with the collision centrality, suggesting a path-length or energy density dependence to the jet-quenching effect. This paper reports STAR measurements of dihadron azimuthal correlations in mid-central (20-60%) Au+Au collisions at $\sqrt{s_{_{\rm NN}}}=200$ GeV as a function of the trigger particle's azimuthal angle relative to the event plane, $\phi_s=|\phi_t-\psi_{\rm EP}|$. The azimuthal correlation is studied as a function of both the trigger and associated particle $p_T$. The subtractions of the combinatorial background and anisotropic flow, assuming Zero Yield At Minimum (ZYAM), are described. The correlation results are first discussed with subtraction of the even harmonic (elliptic and quadrangular) flow backgrounds. The away-side correlation is strongly modified, and the modification varies with $\phi_s$, with a double-peak structure for out-of-plane trigger particles. The near-side ridge (long range pseudo-rapidity $\Delta\eta$ correlation) appears to drop with increasing $\phi_s$ while the jet-like component remains approximately constant. The correlation functions are further studied with subtraction of odd harmonic triangular flow background arising from fluctuations. It is found that the triangular flow, while responsible for the majority of the amplitudes, is not sufficient to explain the $\phi_s$-dependence of the ridge or the away-side double-peak structure. ...
red data points
black histogram
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
dN/deta phis=045 deg, pt=0.151 GeV/c
dN/deta phis=045 deg, pt=0.153 GeV/c
dN/deta phis=090 deg, pt=0.51 GeV/c
dN/deta phis=090 deg, pt=12 GeV/c
dN/deta phis=4590 deg, pt=0.151 GeV/c
sigma vs phis pt=0.151 GeV/c
sigma vs phis pt=0.153 GeV/c
sigma vs phis pt=0.51 GeV/c
sigma vs phis pt=12 GeV/c
sigma vs pt phis=045 deg
sigma vs pt phis=090 deg
sigma vs pt phis=4590 deg
background uncertainty caps in the figure
flow uncertainty curves in the figure
leadage uncertainty arrows in the figure
total uncertainty boxes in the figure
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c
d+Au background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
0^{o} < phi_{s} < 45^{o}
45^{o} < phi_{s} < 90^{o}
Previous in-plane result published in 2004
Previous out-of-plane result published in 2004
3<p_{\text{T}}^{(t)}<4, 1<p_{\text{T}}^{(a)}<2 GeV/c, 0^{o} < phi_{s} < 45^{o}
3<p_{\text{T}}^{(t)}<4, 1<p_{\text{T}}^{(a)}<2 GeV/c, 45^{o} < phi_{s} < 90^{o}
3<p_{\text{T}}^{(t)}<4, 2<p_{\text{T}}^{(a)}<3 GeV/c, 0^{o} < phi_{s} < 45^{o}
3<p_{\text{T}}^{(t)}<4, 2<p_{\text{T}}^{(a)}<3 GeV/c, 45^{o} < phi_{s} < 90^{o}
4<p_{\text{T}}^{(t)}<6, 1<p_{\text{T}}^{(a)}<2 GeV/c, 0^{o} < phi_{s} < 45^{o}
4<p_{\text{T}}^{(t)}<6, 1<p_{\text{T}}^{(a)}<2 GeV/c, 45^{o} < phi_{s} < 90^{o}
4<p_{\text{T}}^{(t)}<6, 2<p_{\text{T}}^{(a)}<3 GeV/c, 0^{o} < phi_{s} < 45^{o}
4<p_{\text{T}}^{(t)}<6, 2<p_{\text{T}}^{(a)}<3 GeV/c, 45^{o} < phi_{s} < 90^{o}
3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
4<p_{\text{T}}^{(t)}<6 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
3<p_{\text{T}}^{(t)}<4 GeV/c
3<p_{\text{T}}^{(t)}<4 GeV/c, 0^{o}15^{o}
3<p_{\text{T}}^{(t)}<4 GeV/c, 75^{o}90^{o}
Cone region, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
one region, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
one region, 4<p_{\text{T}}^{(t)}<6 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
one region, 4<p_{\text{T}}^{(t)}<6 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
i region, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
Pi region, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
i region, 4<p_{\text{T}}^{(t)}<6 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
i region, 4<p_{\text{T}}^{(t)}<6 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
d+Au, 3<p_{\text{T}}^{(t)}<4 GeV/c
20-60%, 3<p_{T}^{(t)}<4 GeV/c, (a) 0^{o}<#phi_{s}<15^{o}
20-60%, 3<p_{T}^{(t)}<4 GeV/c, (b) 75^{o}<#phi_{s}<90^{o}
20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, (a) 0^{o}<phi_{s}<15^{o}
20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, (b) 75^{o}<phi_{s}<90^{o}
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 0, jet
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 1, jet
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 2, jet
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 3, jet
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 4, jet
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 5, jet
1<p_{\text{T}}^{(a)}<2 GeV/c, jet
0-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/, slice 0, ridge
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 1, ridge
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 2, ridge
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 3, ridge
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 4, ridge
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 5, ridge
1<p_{\text{T}}^{(a)}<2 GeV/c, ridge
jet (Deltaphi|<1.0, |Deltaeta|<0.7) 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
jet (Deltaphi|<1.0, |Deltaeta|<0.7) 4<p_{\text{T}}^{(t)}<6 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
ridge (Deltaphi|<1.0, |Deltaeta|>0.7) 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
ridge (Deltaphi|<1.0, |Deltaeta|>0.7) 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
ridge (Deltaphi|<1.0, |Deltaeta|>0.7) 4<p_{\text{T}}^{(t)}<6 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
ridge (Deltaphi|<1.0, |Deltaeta|>0.7) 4<p_{\text{T}}^{(t)}<6 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
3<p_{\text{T}}^{(t)}<4 GeV/c Ridge (75^{o}<|phi_{s}|<90^{o}) / Ridge (0^{o}<|phi_{s}|<15^{o})
4<p_{\text{T}}^{(t)}<6 GeV/c Ridge (75^{o}<|phi_{s}|<90^{o}) / Ridge (0^{o}<|phi_{s}|<15^{o})
3<p_{\text{T}}^{(t)}<4 GeV/c Ridge (30^{o}<|phi_{s}|<45^{o}) / Ridge (0^{o}<|phi_{s}|<15^{o})
4<p_{\text{T}}^{(t)}<6 GeV/c Ridge (30^{o}<|phi_{s}|<45^{o}) / Ridge (0^{o}<|phi_{s}|<15^{o})
3<p_{\text{T}}^{(t)}<4 GeV/c Ridge (0^{o}<|phi_{s}|<15^{o}) / Jet (0^{o}<|phi_{s}|<15^{o})
4<p_{\text{T}}^{(t)}<6 GeV/c Ridge (0^{o}<|phi_{s}|<15^{o}) / Jet (0^{o}<|phi_{s}|<15^{o})
3<p_{\text{T}}^{(t)}<4 GeV/c, cone region
4<p_{\text{T}}^{(t)}<6 GeV/c, cone region
3<p_{\text{T}}^{(t)}<4 GeV/c, jetlike
4<p_{\text{T}}^{(t)}<6 GeV/c, jetlike
3<p_{\text{T}}^{(t)}<4 GeV/c, pi region
4<p_{\text{T}}^{(t)}<6 GeV/c, pi region
3<p_{\text{T}}^{(t)}<4 GeV/c, ridge
4<p_{\text{T}}^{(t)}<6 GeV/c, ridge
fig17_ampl_pt_inclusive
3<p_{\text{T}}^{(t)}<4 GeV/c, 0^{o}<phi_{s}<45^{o}, cone region
3<p_{\text{T}}^{(t)}<4 GeV/c, 0^{o}<phi_{s}<45^{o}, jetlike
3<p_{\text{T}}^{(t)}<4 GeV/c, 0^{o}<phi_{s}<45^{o}, pi region
3<p_{\text{T}}^{(t)}<4 GeV/c, 0^{o}<phi_{s}<45^{o}, pi region ridge
3<p_{\text{T}}^{(t)}<4 GeV/c, 0^{o}<phi_{s}<45^{o}, ridge
3<p_{\text{T}}^{(t)}<4 GeV/c, 45^{o}<phi_{s}<90^{o}, cone region
3<p_{\text{T}}^{(t)}<4 GeV/c, 45^{o}<phi_{s}<90^{o}, jetlike
3<p_{\text{T}}^{(t)}<4 GeV/c, 45^{o}<phi_{s}<90^{o}, pi region
3<p_{\text{T}}^{(t)}<4 GeV/c, 45^{o}<phi_{s}<90^{o}, pi region ridge
3<p_{\text{T}}^{(t)}<4 GeV/c, 45^{o}<phi_{s}<90^{o}, ridge
4<p_{\text{T}}^{(t)}<6 GeV/c, 0^{o}<phi_{s}<45^{o}, cone region
4<p_{\text{T}}^{(t)}<6 GeV/c, 0^{o}<phi_{s}<45^{o}, jetlike
4<p_{\text{T}}^{(t)}<6 GeV/c, 0^{o}<phi_{s}<45^{o}, pi region
4<p_{\text{T}}^{(t)}<6 GeV/c, 0^{o}<phi_{s}<45^{o}, pi region ridge
4<p_{\text{T}}^{(t)}<6 GeV/c, 0^{o}<phi_{s}<45^{o}, ridge
4<p_{\text{T}}^{(t)}<6 GeV/c, 45^{o}<phi_{s}<90^{o}, cone region
4<p_{\text{T}}^{(t)}<6 GeV/c, 45^{o}<phi_{s}<90^{o}, jetlike
4<p_{\text{T}}^{(t)}<6 GeV/c, 45^{o}<phi_{s}<90^{o}, pi region
4<p_{\text{T}}^{(t)}<6 GeV/c, 45^{o}<phi_{s}<90^{o}, pi region ridge
4<p_{\text{T}}^{(t)}<6 GeV/c, 45^{o}<phi_{s}<90^{o}, ridge
jetlike eta sigma
cone peak phi sigma
jetlike phi sigma
ridge phi sigma
jetlike eta sigma
cone peak phi sigma
jetlike phi sigma
ridge phi sigma
dAu jetlike eta sigma
dAu jetlike phi sigma
cone peak centroid
cone peak centroid
cone peak centroid
cone peak centroid
cone peak centroid
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c
d+Au background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c
d+Au background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
v_{2} /3
v_{3}
v_{4}
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c
d+Au background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
background subtracted correlation with upper flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 0
background subtracted correlation with upper flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 1
background subtracted correlation with upper flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 2
background subtracted correlation with upper flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 3
background subtracted correlation with upper flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 4
background subtracted correlation with upper flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 5
background subtracted correlation with upper flow systematic uncertainty Difference of the above results default results in Fig.21, slice 0
background subtracted correlation with upper flow systematic uncertainty Difference of the above results default results in Fig.21, slice 1
background subtracted correlation with upper flow systematic uncertainty Difference of the above results default results in Fig.21, slice 2
background subtracted correlation with upper flow systematic uncertainty Difference of the above results default results in Fig.21, slice 3
background subtracted correlation with upper flow systematic uncertainty Difference of the above results default results in Fig.21, slice 4
background subtracted correlation with upper flow systematic uncertainty Difference of the above results default results in Fig.21, slice 5
background subtracted correlation with lower flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 0
background subtracted correlation with lower flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 1
background subtracted correlation with lower flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 2
background subtracted correlation with lower flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 3
background subtracted correlation with lower flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 4
background subtracted correlation with lower flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 5
background subtracted correlation with lower flow systematic uncertainty Difference of the above results default results in Fig.21, slice 0
background subtracted correlation with lower flow systematic uncertainty Difference of the above results default results in Fig.21, slice 1
background subtracted correlation with lower flow systematic uncertainty Difference of the above results default results in Fig.21, slice 2
background subtracted correlation with lower flow systematic uncertainty Difference of the above results default results in Fig.21, slice 3
background subtracted correlation with lower flow systematic uncertainty Difference of the above results default results in Fig.21, slice 4
background subtracted correlation with lower flow systematic uncertainty Difference of the above results default results in Fig.21, slice 5
background subtracted correlation EP^{ } include |Deltaeta|<0.5 particles, slice 0
background subtracted correlation EP^{ } include |Deltaeta|<0.5 particles, slice 1
background subtracted correlation EP^{ } include |Deltaeta|<0.5 particles, slice 2
background subtracted correlation EP^{ } include |Deltaeta|<0.5 particles, slice 3
background subtracted correlation EP^{ } include |Deltaeta|<0.5 particles, slice 4
background subtracted correlation EP^{ } include |Deltaeta|<0.5 particles, slice 5
background subtracted correlation Difference of the above results default results in Fig.21, slice 0
background subtracted correlation Difference of the above results default results in Fig.21, slice 1
background subtracted correlation Difference of the above results default results in Fig.21, slice 2
background subtracted correlation Difference of the above results default results in Fig.21, slice 3
background subtracted correlation Difference of the above results default results in Fig.21, slice 4
background subtracted correlation Difference of the above results default results in Fig.21, slice 5
d+Au background subtracted correlation EP^{ } include |Deltaeta|<0.5 particles
difference from default results, slice 0
difference from default results, slice 1
difference from default results, slice 2
difference from default results, slice 3
difference from default results, slice 4
difference from default results, slice 5
raw signal
bkgd <v2t*v2>
bkgd <v2t>*<v2> (previous inclusive analysis)
bkgd <v2t*v2> subtracted
bkgd <v2t>*<v2> subtracted (previous inclusive analysis)
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
d+Au raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c
d+Au raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c
d+Au raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c
d+Au raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c
d+Au raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
d+Au background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
d+Au background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
We report on K*0 production at mid-rapidity in Au+Au and Cu+Cu collisions at \sqrt{s_{NN}} = 62.4 and 200 GeV collected by the Solenoid Tracker at RHIC (STAR) detector. The K*0 is reconstructed via the hadronic decays K*0 \to K+ pi- and \bar{K*0} \to K-pi+. Transverse momentum, pT, spectra are measured over a range of pT extending from 0.2 GeV/c to 5 GeV/c. The center of mass energy and system size dependence of the rapidity density, dN/dy, and the average transverse momentum,
The K$\pi$ pair invariant mass distribution integrated over the $K^{*0}$ $p_T$ for minimum bias Au+Au collisions at $\sqrt{s_{NN}}$ =200 GeV after mixed-event background subtraction.
The K$\pi$ pair invariant mass distribution integrated over the $K^{*0}$ $p_T$ for minimum bias Au+Au collisions at $\sqrt{s_{NN}}$ =62.4 GeV after mixed-event background subtraction.
The K$\pi$ pair invariant mass distribution integrated over the $K^{*0}$ $p_T$ for minimum bias Cu+Cu collisions at $\sqrt{s_{NN}}$ =200 GeV after mixed-event background subtraction.
The K$\pi$ pair invariant mass distribution integrated over the $K^{*0}$ $p_T$ for minimum bias Cu+Cu collisions at $\sqrt{s_{NN}}$ =62.4 GeV after mixed-event background subtraction.
The Kπ pair invariant mass distribution for various pT bins (top left) pT = 0.4–0.6 GeV/c in Au+Au collisions at √sNN = 200 GeV after the mixed-event background subtraction.
The Kπ pair invariant mass distribution for various pT bins (top right) pT = 0.6–0.8 GeV/c in Au+Au collisions at √sNN = 62.4 GeV after the mixed-event background subtraction.
The Kπ pair invariant mass distribution for various pT bins (bottom left) pT = 0.8–1.0 GeV/c in Au+Au collisions at √sNN = 200 GeV after the mixed-event background subtraction.
The Kπ pair invariant mass distribution for various pT bins (bottom right) pT = 1.0–1.2 GeV/c in Au+Au collisions at √sNN = 62.4 GeV after the mixed-event background subtraction.
The signal-to-background ratio for $K^{*0}$ measurements as a function of $p_T$ for different collision centrality bins (0-10%, 10-40%, 40-60%, 60-80%) in Au+Au collisions at 200 GeV.
$K^{*0}$ mass as a function of $p_T$ for minimum bias Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV.
$K^{*0}$ mass as a function of $p_T$ for minimum bias Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
$K^{*0}$ mass as a function of $p_T$ for minimum bias Cu+Cu collisions at $\sqrt{s_{NN}}$ = 62.4 GeV
$K^{*0}$ mass as a function of $p_T$ for minimum bias Cu+Cu collisions at $\sqrt{s_{NN}}$ = 200 GeV
$K^{*0}$ width as a function of $p_T$ for minimum bias Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV
$K^{*0}$ width as a function of $p_T$ for minimum bias Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
$K^{*0}$ width as a function of $p_T$ for minimum bias Cu+Cu collisions at $\sqrt{s_{NN}}$ = 62.4 GeV
$K^{*0}$ width as a function of $p_T$ for minimum bias Cu+Cu collisions at $\sqrt{s_{NN}}$ = 200 GeV
The $K^{*0}$ reconstruction efficiency multiplied by the detector acceptance as a function of $p_T$ in Au+Au (|$\eta$| < 0.8) collisions at 200 GeV for different collision centrality bins (0-20% ,20-40% , 40-60%)
The $K^{*0}$ reconstruction efficiency multiplied by the detector acceptance as a function of $p_T$ in Cu+Cu (|$\eta$| < 1.0) collisions at 200 GeV for different collision centrality bins (0-20% ,20-40% , 40-60%)
Mid-rapidity $K^{*0}$ $p_T$ spectra for various collision centrality bins (0-20%, 20-40%, 40-60%, 60-80%) in Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV
Mid-rapidity $K^{*0}$ $p_T$ spectra for various collision centrality bins (0-20%, 20-40%, 40-60%) in Cu+Cu collisions at $\sqrt{s_{NN}}$ = 62.4 GeV
Mid-rapidity $K^{*0}$ $p_T$ spectra for various collision centrality bins (0-20%, 20-40%, 40-60%, 60-80%) in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
Mid-rapidity $K^{*0}$ $p_T$ spectra for various collision centrality bins (0-20%, 20-40%, 40-60%) in Cu+Cu collisions at $\sqrt{s_{NN}}$ = 200 GeV
The mid-rapidity yields dN/dy of $K^{*0}$ as a function of the average number of participating nucleons, $⟨N_{part}⟩$, for Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV
The mid-rapidity yields dN/dy of $K^{*0}$ as a function of the average number of participating nucleons, $⟨N_{part}⟩$, for Cu+Cu collisions at $\sqrt{s_{NN}}$ = 62.4 GeV
The mid-rapidity yields dN/dy of $K^{*0}$ as a function of the average number of participating nucleons, $⟨N_{part}⟩$, for Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
The mid-rapidity yields dN/dy of $K^{*0}$ as a function of the average number of participating nucleons, $⟨N_{part}⟩$, for Cu+Cu collisions at $\sqrt{s_{NN}}$ = 200 GeV
The mid-rapidity $K^{*0}$ $⟨p_T⟩$ as a function $⟨N_{part}⟩$ for Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV
The mid-rapidity $K^{*0}$ $⟨p_T⟩$ as a function $⟨N_{part}⟩$ for Cu+Cu collisions at $\sqrt{s_{NN}}$ = 62.4 GeV
The mid-rapidity $K^{*0}$ $⟨p_T⟩$ as a function $⟨N_{part}⟩$ for Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
The mid-rapidity $K^{*0}$ $⟨p_T⟩$ as a function $⟨N_{part}⟩$ for Cu+Cu collisions at $\sqrt{s_{NN}}$ = 200 GeV
The mid-rapidity $⟨p_T⟩$ of $\pi$, K, p and $K^{*0}$ as a function of $⟨N_{part}⟩$ for Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV.
Mid-rapidity $N(K^{*0})/N(K^-)$ ratio for Au+Au at $\sqrt{s_{NN}}$ = 62.4 GeV as a function of $⟨N_{part}⟩$
Mid-rapidity $N(K^{*0})/N(K^-)$ ratio for Cu+Cu at $\sqrt{s_{NN}}$ = 62.4 GeV as a function of $⟨N_{part}⟩$
Mid-rapidity $N(K^{*0})/N(K^-)$ ratio for Au+Au at $\sqrt{s_{NN}}$ = 200 GeV as a function of $⟨N_{part}⟩$
Mid-rapidity $N(K^{*0})/N(K^-)$ ratio for Cu+Cu at $\sqrt{s_{NN}}$ = 200 GeV as a function of $⟨N_{part}⟩$
Mid-rapidity $N(K^{*0})N(K^-)$ in Au+Au collisions divided by $N(K^{*0})N(K^-)$ ratio in p+p collisions at $\sqrt{s_{NN}}$=200 GeV as a function of $⟨N_{part}⟩$.
Mid-rapidity $N(K^{*0})N(K^-)$ in Cu+Cu collisions divided by $N(K^{*0})N(K^-)$ ratio in p+p collisions at $\sqrt{s_{NN}}$=200 GeV as a function of $⟨N_{part}⟩$
Mid-rapidity $N(K^{*0})N(K^-)$ in d+Au collisions divided by $N(K^{*0})N(K^-)$ ratio in d+Au collisions at $\sqrt{s_{NN}}$=200 GeV as a function of $⟨N_{part}⟩$
Mid-rapidity $N(K^{*0})/N(K^-)$ ratio in minimum bias Au+Au collisions as a function of $\sqrt{s_{NN}}.
Mid-rapidity $N(K^{*0})/N(K^-)$ ratio in minimum bias Cu+Cu collisions as a function of $\sqrt{s_{NN}}.
Mid-rapidity $N(K^{*0})/N(K^-)$ ratio in minimum bias p+p collisions as a function of $\sqrt{s_{NN}}.
Mid-rapidity $N(K^{*0})/N(K^-)$ ratio in minimum bias Au+Au collisions as a function of $\sqrt{s_{NN}}.
Mid-rapidity $N(K^{*0})/N(K^-)$ ratio in minimum bias Cu+Cu collisions as a function of $\sqrt{s_{NN}}.
Mid-rapidity $N(K^{*0})/N(K^-)$ ratio in minimum bias p+p collisions as a function of $\sqrt{s_{NN}}.
Mid-rapidity $N(\phi)/N(K^{*0})$ ratio for Au+Au at $\sqrt{s_{NN}}$ = 62.4 GeV as a function of $⟨N_{part}⟩$
Mid-rapidity $N(\phi)/N(K^{*0})$ ratio for Cu+Cu at $\sqrt{s_{NN}}$ = 62.4 GeV as a function of $⟨N_{part}⟩$
Mid-rapidity $N(\phi)/N(K^{*0})$ ratio for Au+Au at $\sqrt{s_{NN}}$ = 200 GeV as a function of $⟨N_{part}⟩$
Mid-rapidity $N(\phi)/N(K^{*0})$ ratio for Cu+Cu at $\sqrt{s_{NN}}$ = 200 GeV as a function of $⟨N_{part}⟩$
Mid-rapidity $[N(\phi)/N(K^{*0})]$ in Au+Au collisions divided by $[N(\phi)/N(K^{*0})]$ ratio in p+p collisions at $\sqrt{s_{NN}}$=200 GeV as a function of $⟨N_{part}⟩$
Mid-rapidity $[N(\phi)/N(K^{*0})]$ in Cu+Cu collisions divided by $[N(\phi)/N(K^{*0})]$ ratio in p+p collisions at $\sqrt{s_{NN}}$=200 GeV as a function of $⟨N_{part}⟩$
Mid-rapidity $[N(\phi)/N(K^{*0})]$ in d+Au collisions divided by $[N(\phi)/N(K^{*0})]$ ratio in p+p collisions at $\sqrt{s_{NN}}$=200 GeV as a function of $⟨N_{part}⟩$
Mid-rapidity $N(\phi)/N(K^{*0})$ ratio in minimum bias Au+Au collisions as a function of $\sqrt{s_{NN}}$.
Mid-rapidity $N(\phi)/N(K^{*0})$ ratio in minimum bias Cu+Cu collisions as a function of $\sqrt{s_{NN}}$.
Mid-rapidity $N(\phi)/N(K^{*0})$ ratio in minimum bias p+p collisions as a function of $\sqrt{s_{NN}}$.
Mid-rapidity $N(\phi)/N(K^{*0})$ ratio in minimum bias Au+Au collisions as a function of $\sqrt{s_{NN}}$.
Mid-rapidity $N(\phi)/N(K^{*0})$ ratio in minimum bias Cu+Cu collisions as a function of $\sqrt{s_{NN}}$.
Mid-rapidity $N(\phi)/N(K^{*0})$ ratio in minimum bias p+p collisions as a function of $\sqrt{s_{NN}}$.
The $K^{*0}$ $v_2$ (Run IV) as a function of $p_T$ in minimum bias Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
The $K^{*0}$ $v_2$ (Run II) as a function of $p_T$ in minimum bias Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
The $K^{*0}$ $R_{CP}$ as a function of $p_T$ in Au+Au collisions at 62.4 and 200 GeV compared to the $R_{CP}$ of $K^0_S$ and $\Lambda$ at 200 GeV.
The $K^{*0}$ $R_{CP}$ as a function of $p_T$ in Au+Au collisions at 62.4 and 200 GeV compared to the $R_{CP}$ of $K^0_S$ and $\Lambda$ at 200 GeV.
The $K^{*0}$ $R_{CP}$ as a function of $p_T$ in Au+Au collisions at 62.4 and 200 GeV compared to the $R_{CP}$ of $K^0_S$ and $\Lambda$ at 200 GeV.
The $K^{*0}$ ~$R_{CP}$~ as a function of $p_T$ in Au+Au collisions at 62.4 and 200 GeV compared to the $R_{CP}$ of $K^0_S$ and $\Lambda$ at 200 GeV.
We report the first measurements of the kurtosis (\kappa), skewness (S) and variance (\sigma^2) of net-proton multiplicity (N_p - N_pbar) distributions at midrapidity for Au+Au collisions at \sqrt(s_NN) = 19.6, 62.4, and 200 GeV corresponding to baryon chemical potentials (\mu_B) between 200 - 20 MeV. Our measurements of the products \kappa \sigma^2 and S \sigma, which can be related to theoretical calculations sensitive to baryon number susceptibilities and long range correlations, are constant as functions of collision centrality. We compare these products with results from lattice QCD and various models without a critical point and study the \sqrt(s_NN) dependence of \kappa \sigma^2. From the measurements at the three beam energies, we find no evidence for a critical point in the QCD phase diagram for \mu_B below 200 MeV.
$\Delta N_p$ multiplicity distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for 0-5 percent central collisions at midrapidity (| y |< 0.5).
$\Delta N_p$ multiplicity distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for 30-40 percent central collisions at midrapidity (| y |< 0.5).
$\Delta N_p$ multiplicity distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for 70-80 percent central collisions at midrapidity (| y |< 0.5).
Centrality dependence of moments of $\Delta N_p$ distributions for Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.
Centrality dependence of moments of $\Delta N_p$ distributions for Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.
Centrality dependence of moments of $\Delta N_p$ distributions for Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.
Centrality dependence of moments of $\Delta N_p$ distributions for Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.
Centrality dependence of moments of $\Delta N_p$ distributions for Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV.
Centrality dependence of moments of $\Delta N_p$ distributions for Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV.
Centrality dependence of moments of $\Delta N_p$ distributions for Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV.
Centrality dependence of moments of $\Delta N_p$ distributions for Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV.
Centrality dependence of moments of $\Delta N_p$ distributions for Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
Centrality dependence of moments of $\Delta N_p$ distributions for Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
Centrality dependence of moments of $\Delta N_p$ distributions for Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
Centrality dependence of moments of $\Delta N_p$ distributions for Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
Centrality dependence of $S\sigma$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.
Centrality dependence of $\kappa\sigma^2$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.
Centrality dependence of $S\sigma$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV.
Centrality dependence of $\kappa\sigma^2$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV.
Centrality dependence of $S\sigma$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
Centrality dependence of $\kappa\sigma^2$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
Centrality dependence of $S\sigma$ for $\Delta N_p$ in Au+Au collisions from Lattice QCD Calculations.
Centrality dependence of $S\sigma$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV from Transport Model Calculations.
Centrality dependence of $S\sigma$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV from Transport Model Calculations.
Centrality dependence of $S\sigma$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV from Transport Model Calculations.
Centrality dependence of $\kappa\sigma^2$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV from Transport Model Calculations.
Centrality dependence of $\kappa\sigma^2$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV from Transport Model Calculations for net-baryon.
Centrality dependence of $\kappa\sigma^2$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV from Transport Model Calculations for net-proton (No Decay).
Centrality dependence of $\kappa\sigma^2$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV from Transport Model Calculations.
Centrality dependence of $\kappa\sigma^2$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV from Transport Model Calculations.
Centrality dependence of $\kappa\sigma^2$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV from Transport Model Calculations.
Centrality dependence of $\kappa\sigma^2$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV from Transport Model Calculations.
Centrality dependence of $\kappa\sigma^2$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV from Transport Model Calculations.
Centrality dependence of $\kappa\sigma^2$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV from Transport Model Calculations.
$\sqrt{s_{NN}}$ dependence of $\kappa\sigma^2$ for net proton distributions measured at RHIC. The results are STAR data.
$\sqrt{s_{NN}}$ dependence of $\kappa\sigma^2$ for net proton distributions measured at RHIC. The results are from UrQMD net-proton.
$\sqrt{s_{NN}}$ dependence of $\kappa\sigma^2$ for net proton distributions measured at RHIC. The results are from AMPT default net-proton.
$\sqrt{s_{NN}}$ dependence of $\kappa\sigma^2$ for net proton distributions measured at RHIC. The results are from AMPT String Melting net-proton.
$\sqrt{s_{NN}}$ dependence of $\kappa\sigma^2$ for net proton distributions measured at RHIC. The results are from Therminator net-proton.
$\sqrt{s_{NN}}$ dependence of $\kappa\sigma^2$ for net proton distributions measured at RHIC. The results are from Hijing net-proton.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.