Measurement of the E(T,jet)**2/Q**2 dependence of forward-jet production at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Phys.Lett.B 474 (2000) 223-233, 2000.
Inspire Record 508906 DOI 10.17182/hepdata.43875

The forward-jet cross section in deep inelastic ep scattering has been measured using the ZEUS detector at HERA with an integrated luminosity of 6.36 pb^-1. The jet cross section is presented as a function of jet transverse energy squared, E(T,jet)^2, and Q^2 in the kinematic ranges 10^-2<E(T,jet)^2/Q^2<10^2 and 2.5 10^-4<x<8.0 10^-2. Since the perturbative QCD predictions for this cross section are sensitive to the treatment of the log(E_T/Q)^2 terms, this measurement provides an important test. The measured cross section is compared to the predictions of a next-to-leading order pQCD calculation as well as to various leading-order Monte Carlo models. Whereas the predictions of all models agree with the measured cross section in the region of small E(T,Jet)^2/Q^2, only one model, which includes a resolved photon component, describes the data over the whole kinematic range.

2 data tables

Forward jet cross section as a function of ET**2/Q**2. The second DSYS error is the uncertainty in the energy scale of the calorimeter.

Measured forward-jet x distribution.


Version 2
Forward jet and particle production at HERA

The H1 collaboration Adloff, C. ; Anderson, M. ; Andreev, V. ; et al.
Nucl.Phys.B 538 (1999) 3-22, 1999.
Inspire Record 476801 DOI 10.17182/hepdata.44172

Single particles and jets in deeply inelastic scattering at low x are measured with the H1 detector in the region away from the current jet and towards the proton remnant, known as the forward region. Hadronic final state measurements in this region are expected to be particularly sensitive to QCD evolution effects. Jet cross-sections are presented as a function of Bjorken-x for forward jets produced with a polar angle to the proton direction, theta, in the range 7 < theta < 20 degrees. Azimuthal correlations are studied between the forward jet and the scattered lepton. Charged and neutral single particle production in the forward region are measured as a function of Bjorken-x, in the range 5 < theta < 25 degrees, for particle transverse momenta larger than 1 GeV. QCD based Monte Carlo predictions and analytical calculations based on BFKL, CCFM and DGLAP evolution are compared to the data. Predictions based on the DGLAP approach fail to describe the data, except for those which allow for a resolved photon contribution.

11 data tables

Forward Jet cross section. Axis error includes +- 7/7 contribution (Dependence of the model used to correct the data).

Forward Di-jet cross section. Axis error includes +- 7/7 contribution (Dependence of the model used to correct the data).

Data from Figure 3a on charged particle production

More…

Forward jet production in deep inelastic scattering at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 6 (1999) 239-252, 1999.
Inspire Record 470499 DOI 10.17182/hepdata.44288

The inclusive forward jet cross section in deep inelastic $e^+p$ scattering has been measured in the region of $x$--Bjorken, ~$4.5 \cdot 10^{-4}$~ to ~$4.5 \cdot 10^{-2}$. This measurement is motivated by the search for effects of BFKL--like parton shower evolution. The cross section at hadron level as a function of \xbj is compared to cross sections predicted by various Monte Carlo models. An excess of forward jet production at small \xbj is observed, which is not reproduced by models based on DGLAP parton shower evolution. The Colour Dipole model describes the data reasonably well. Predictions of perturbative QCD calculations at the parton level based on BFKL and DGLAP parton evolution are discussed in the context of this measurement.

1 data table

The second systematic (DSYS) error is the correlated systematic error due to the scale uncertainty of the calorimeter.