The NA61/SHINE experiment at the CERN SPS is performing a uniqe study of the phase diagram of strongly interacting matter by varying collision energy and nuclear mass number of colliding nuclei. In central Pb+Pb collisions the NA49 experiment found structures in the energy dependence of several observables in the CERN SPS energy range that had been predicted for the transition to a deconfined phase. New measurements of NA61/SHINE find intriguing similarities in p+p interactions for which no deconfinement transition is expected at SPS energies. Possible implications will be discussed.
K+/PI+ at y=0.
K+/PI+ at y=0.
<K+>/<PI+>.
Anisotropies in the initial energy density distribution of the quark-gluon plasma created in high energy heavy ion collisions lead to anisotropies in the azimuthal distributions of the final-state particles known as collective flow. Fourier harmonic decomposition is used to quantify these anisotropies. The higher-order harmonics can be induced by the same order anisotropies (linear response) or by the combined influence of several lower order anisotropies (nonlinear response) in the initial state. The mixed higher-order anisotropic flow and nonlinear response coefficients of charged particles are measured as functions of transverse momentum and centrality in PbPb collisions at nucleon-nucleon center-of-mass energies $\sqrt{s_\mathrm{NN}} =$ 2.76 and 5.02 TeV with the CMS detector. The results are compared with viscous hydrodynamic calculations using several different initial conditions, as well as microscopic transport model calculations. None of the models provides a simultaneous description of the mixed higher-order flow harmonics and nonlinear response coefficients.
Mixed higher-order flow harmonic $v_4\{\Psi_{22}\}$ from the scalar-product method at 5.02 TeV as a function of PT in the 0-20% centrality range.
Mixed higher-order flow harmonic $v_5\{\Psi_{23}\}$ from the scalar-product method at 5.02 TeV as a function of PT in the 0-20% centrality range.
Mixed higher-order flow harmonic $v_6\{\Psi_{222}\}$ from the scalar-product method at 5.02 TeV as a function of PT in the 0-20% centrality range.
None
No description provided.
No description provided.
The process $e^+e^- \to K^+K^-\pi^+\pi^-$ has been studied in the center-of-mass energy range from 1500 to 2000\,MeV using a data sample of 23 pb$^{-1}$ collected with the CMD-3 detector at the VEPP-2000 $e^+e^-$ collider. Using about 24000 selected events, the $e^+e^- \to K^+K^-\pi^+\pi^-$ cross section has been measured with a systematic uncertainty decreasing from 11.7\% at 1500-1600\,MeV to 6.1\% above 1800\,MeV. A preliminary study of $K^+K^-\pi^+\pi^-$ production dynamics has been performed.
Center-of-mass energy, integrated luminosity, number of four-track events, number of three-track events, detection efficiency, radiative correction and Born cross section of the process $e^{+}e^{-} \to K^{+} K^{-} \pi^{+} \pi^{-}$. Errors are statistical only.
Approximately 100 000 four-prong antiproton annihilations in hydrogen were measured. A clean, unbiased sample of 842 K + K − π + π − events was obtained. This reaction is dominated by K ∗ (∼45%) and ϱ 0 (∼20%) production, with smaller amounts of A 2 0 (∼15%) and ϕ (∼5%) production. 25% of the reactions involved double resonance production. No significant three-body resonance production is observed.
ERRORS INCLUDE SYSTEMATICS.
Results are reported on the reaction p p → π + π + π − π − π 0 at six lab momenta spanning the region from 0.686 to 1.098 GeV/ c . The cross section for this process drops from 20.3 ± 1.2 mb at 0.686 GeV/ c to 13 1.0 mb at 1.098 GeV/ c . Resonance production is determined by means of a model which includes Bose symmetrization, Breit-Wigner amplitudes and Bose-Einstein correlations for the like-charged pion pairs in the nonresonant part of the amplitude. The likelihood fit to the resonance channels yields about 0.8% ηππ , 12% ϱ ± πππ , 2% f πππ , 8% ω ππ , 22% ϱ ± ϱ 0 π , 13% ωϱ 0 and 9% ω f with errors on the order of a few percent. Several percent A 1 ± ππ and X(1440) π were also needed to obtain good fits. The ϱ 0 πππ and ϱ 0 ϱ 0 π channels as well as A 2 ππ and A 1 0 ππ are consistent with zero. Reasonable fits to the mass distributions are obtained. Production angular distributions are found to be essentially uniform. The angular correlations between pion pairs are approximately fit by the simple model of resonance production with Bose symmetrization.
Axis error includes +- 0.0/0.0 contribution.
Axis error includes +- 0.0/0.0 contribution.
Using a data sample of 6.8 pb$^{-1}$ collected with the CMD-3 detector at the VEPP-2000 $e^+e^-$ collider we select about 2700 events of the $e^+e^- \to p\bar{p}$ process and measure its cross section at 12 energy ponts with about 6\% systematic uncertainty. From the angular distribution of produced nucleons we obtain the ratio $|G_{E}/G_{M}| = 1.49 \pm 0.23 \pm 0.30$.
The c.m. energy, beam energy shift, luminosity, number of selected $e^+e^- \to p\bar{p}$ events, detection efficiency, radiative correction, and cross section with statistical and systematic errors. The data for collinear type events.
The c.m. energy, luminosity, number of signal events, fraction of antiprotons stopped in beam pipe and DC inner shell, efficiency, cross section with statistical and systematic errors, for annihilation events.
The second-order azimuthal anisotropy Fourier harmonics, v2, are obtained in pPb and PbPb collisions over a wide pseudorapidity (eta) range based on correlations among six or more charged particles. The pPb data, corresponding to an integrated luminosity of 35 inverse nanobarns, were collected during the 2013 LHC pPb run at a nucleon-nucleon center-of-mass energy of 5.02 TeV by the CMS experiment. A sample of semi-peripheral PbPb collision data at sqrt(s[NN])= 2.76 TeV, corresponding to an integrated luminosity of 2.5 inverse microbarns and covering a similar range of particle multiplicities as the pPb data, is also analyzed for comparison. The six- and eight-particle cumulant and the Lee-Yang zeros methods are used to extract the v2 coefficients, extending previous studies of two- and four-particle correlations. For both the pPb and PbPb systems, the v2 values obtained with correlations among more than four particles are consistent with previously published four-particle results. These data support the interpretation of a collective origin for the previously observed long-range (large Delta[eta]) correlations in both systems. The ratios of v2 values corresponding to correlations including different numbers of particles are compared to theoretical predictions that assume a hydrodynamic behavior of a pPb system dominated by fluctuations in the positions of participant nucleons. These results provide new insights into the multi-particle dynamics of collision systems with a very small overlapping region.
The cumulant $c_2\{6\}$ extracted for all charged particles with $0.3 < p_T < 3.0$ GeV/c as a function of $N_{trk}^{offline}$ in PbPb collisions.
The cumulant $c_2\{8\}$ extracted for all charged particles with $0.3 < p_T < 3.0$ GeV/c as a function of $N_{trk}^{offline}$ in PbPb collisions.
The cumulant $c_2\{6\}$ extracted for all charged particles with $0.3 < p_T < 3.0$ GeV/c as a function of $N_{trk}^{offline}$ in pPb collisions.
A preliminary study of single pion production with no annihilation and multiple pion annihilation in antiproton-proton interactions at 7 GeV/c indicates that the single pion production cross-section is 5.6±1.2mb, and the multipion annihilation cross-section is ∼24mb. Although there is strong evidence for resonance production in the one pion production channels, these states do not appear to be dominated by any single resonance. Resonance production in the annihilation channels is small compared to rates observed at lower energies.
No description provided.
None
No description provided.
No description provided.
No description provided.