Integral cross sections for π + p interaction have been measured between 125.9 and 201.7 MeV using the transmission method. Over this energy range the results are in very good agreement with predictions made with currently accepted phase shifts. These results are also consistent with similar measurements at lower energies when the dispersion relation constrained Karlsruhe phase shifts are used.
No description provided.
Total reaction cross sections of 20 MeV π − and 30 MeV π + and π − have been measured for carbon and nickel targets. The experimental results are in very good agreement with calculations based on commonly accepted pion-nucleus potentials but disagree with calculations based on the potentials associated with the so-called pionic atom anomaly.
No description provided.
No description provided.
Angular distributions of charge asymmetry A(Tπ,θ), have been measured for πd elastic scattering. Data were obtained in the backward hemisphere for pion bombarding energies of 143, 180, 220, and 256 MeV. The results are compared with predictions employing different mass and width parameters for the delta isobars.
No description provided.
No description provided.
No description provided.
Measurements of the vector analyzing power iT11 in πd elastic scattering at 49 MeV have been performed using a dynamically polarized target and a magnetic spectrometer. Data at seven π+ laboratory scattering angles between 50° and 130° were taken together with a complementary measurement at 60° for π−d elastic scattering. In general, we find agreement with models that include the πN P11 amplitude and disagreement with models that exclude or suppress it.
No description provided.
No description provided.
The pion induced pion production reactions π±p→π+π±n were studied at projectile incident energies of 223, 243, 264, 284, and 305 MeV, using a cryogenic liquid hydrogen target. The Canadian High Acceptance Orbit Spectrometer was used to detect the two outgoing pions in coincidence. The experimental results are presented in the form of single differential cross sections. Total cross sections obtained by integrating the differential quantities are also reported. In addition, the invariant mass distributions from the (π+π−) channel were fitted to determine the parameters for an extended model based on that of Oset and Vicente-Vacas. We find the model parameters obtained from fitting the (π+π−) data do not describe the invariant mass distributions in the (π+π+) channel.
Total cross sections were obtained by integrating the differential cross section over all three variables: M(pi,pi)**2, t, Cos(Theta(pi)).
Total cross sections were obtained by integrating the differential cross section over all three variables: M(pi,pi)**2, t, Cos(Theta(pi)).
Total cross sections for the π − p single charge exchange and 20° “partial-total” cross sections have been measured between 126 and 202 MeV pion energy. The former are about 4% below similar results of Bugg et al. and (5–10)% below predictions made with currently accepted phase shifts. The latter agree quite well with calculations.
No description provided.
The pion induced pion production (π, 2π) reaction on deuterium has been studied at an incident pion energy of 280 MeV. The outgoing pions were detected in coincidence and the measured four-fold cross sections were compared with a πN → ππ N microscopic model, and, upon integration, with the available experimental total cross sections from the same reaction on H and 2 H. Finally, the results were directly compared with recent data from the 16 O(π + , π + π − ) reaction at the same incident energy.
No description provided.
Integral cross sections for the elastic scattering of π + by protons into angles greater than 20° or 30° (lab) have been measured by the beam-attenuation technique over the energy range of 45–126MeV. The measurements are aimed at providing independent checks on the absolute normalization of differential cross sections, where discrepancies exist between different data sets. Comparisons with predictions made with existing phase shifts show very good agreement with the dispersion-relation constrained phase shifts of the Karlsruhe group.
Two targets (C=THIN) and (C=THICK) are used.
The total cross section for the π−p→π−π+n reaction has been measured at incident pion kinetic energies of 200, 190, 184, and 180 MeV. In addition, the π+p→π+π+n reaction was measured at 200 and 184 MeV. A fit of the cross sections by heavy baryon chiral perturbation theory yields values of 8.5±0.6(mπ−3) and 2.5±0.1(mπ−3) for the reaction matrix elements A10 and A32, which correspond to values for the s-wave isospin-0 and isospin-2 π−π scattering lengths of a0=0.23±0.08(mπ−1) and a2=−0.031±0.008(mπ−1), respectively.
No description provided.
Total cross-section measurements of the π+p→π+π+n reaction at pion kinetic energies of 180, 184, 190, and 200 MeV are reported. The threshold value for the amplitude a(π+π+) as well as the s-wave, isospin 2, ππ scattering length a20 were determined. The results were found to be in agreement with chiral perturbation theory and inconsistent with the calculations of Jacob and Scadron and the model of dominance by quark loop anomalies.
No description provided.