Nearly complete angular distributions of the two-body deuteron photodisintegration differential cross section have been measured using the CLAS detector and the tagged photon beam at JLab. The data cover photon energies between 0.5 and 3.0 GeV and center-of-mass proton scattering angles 10-160 degrees. The data show a persistent forward-backward angle asymmetry over the explored energy range, and are well-described by the non-perturbative Quark Gluon String Model.
Angular distributions of the photodisintegration cross section for angle between 10 and 50 degrees in the CM.
Angular distributions of the photodisintegration cross section for angle between 50 and 90 degrees in the CM.
Angular distributions of the photodisintegration cross section for angle between 90 and 130 degrees in the CM.
Electroproduction of the omega meson was investigated in the p(e,e'p)omega reaction. The measurement was performed at a 4-momentum transfer Q2 ~ 0.5 GeV2. Angular distributions of the virtual photon-proton center-of-momentum cross sections have been extracted over the full angular range. These distributions exhibit a strong enhancement over t-channel parity exchange processes in the backward direction. According to a newly developed electroproduction model, this enhancement provides significant evidence of resonance formation in the gamma* p -> omega p reaction channel.
Differential cross section for an average W of 1.75 GeV.
Differential cross section for an average W of 1.79 GeV.
Measured values of the differential cross section for pion-nucleon charge exchange are presented at momenta 148, 174, 188, 212, 238, 271, 298, and 323 MeV/c, a region dominated by the Delta resonance. Complete angular distributions were obtained using the Crystal Ball detector at the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL). Statistical uncertainties of the differential cross sections are typically 2-6%, exceptions being the results at the lowest momentum and at the most forward measurements of the five lowest momenta. We estimate the systematic uncertainties to be 3-6%.
The errors shown are statistical only.
The errors shown are statistical only.
The total charge-exchange reaction cross section as a function of pion momentum obtained by integrating the differential cross sections. The errors shown are the total and statistical errors.
We report on precision measurements of the elastic cross section for electron-proton scattering performed in Hall C at Jefferson Lab. The measurements were made at 28 unique kinematic settings covering a range in momentum transfer of 0.4 $<$ $Q^2$ $<$ 5.5 $(\rm GeV/c)^2$. These measurements represent a significant contribution to the world's cross section data set in the $Q^2$ range where a large discrepancy currently exists between the ratio of electric to magnetic proton form factors extracted from previous cross section measurements and that recently measured via polarization transfer in Hall A at Jefferson Lab.
Measured values of the electron-proton elastic cross section for beam energy 1.148 GeV.
Measured values of the electron-proton elastic cross section for beam energy 1.882 GeV.
Measured values of the electron-proton elastic cross section for beam energy 2.235 GeV.
Total and differential cross sections for the reaction p(gamma, eta)p have been measured for photon energies in the range from 750 MeV to 3 GeV. The low-energy data are dominated by the S11 wave which has two poles in the energy region below 2 GeV. Eleven nucleon resonances are observed in their decay into p eta. At medium energies we find evidence for a new resonance N(2070)D15 with (mass, width) = (2068+-22, 295+-40) MeV. At photon energies above 1.5 GeV, a strong peak in forward direction develops, signalling the exchange of vector mesons in the t channel.
Total cross section determined by summing the angular bins and extrapolating outside the angular range of the experiment.
Differential cross section as a function of c.m. angle for the photon energy range 750 to 950 GeV.
Differential cross section as a function of c.m. angle for the photon energy range 950 to 1150 GeV.
The reaction pp->d K+ Kbar0 has been investigated at an excess energy of Q=46 MeV above the (K+ Kbar0) threshold with ANKE at COSY-Juelich. From the detected coincident dK+ pairs about 1000 events with a missing Kbar0 were identified, corresponding to a total cross section of sigma(pp->d K+ Kbar0)=(38 +/- 2(stat) +/- 14(syst)) nb. Invariant-mass and angular distributions have been jointly analyzed and reveal s-wave dominance between the two kaons, accompanied by a p-wave between the deuteron and the kaon system. This is interpreted in terms of a0+(980)-resonance production.
Total cross section for P P --> DEUT K+ KBAR0.
Centre of mass angular distribution of the deuteron with respect to the direction of the incoming proton.
Centre of mass angular distribution of the vector joining the K+ and KBAR0 with respect to the direction of the incoming proton.
A facility for detection of scattered neutrons in the energy interval 50–130MeV, SCANDAL, has recently been installed at the 20–180MeV neutron beam line of the The Svedberg Laboratory, Uppsala. Elastic neutron scattering from C12 and Pb208 has been studied at 96MeV in the 10°–70° interval. The achieved energy resolution, 3.7MeV, is about an order of magnitude better than for any previous experiment above 65MeV incident energy. The present experiment represents the highest neutron energy where the ground state has been resolved from the first excited state in neutron scattering. A novel method for normalization of the absolute scale of the cross section has been used. The estimated normalization uncertainty, 3%, is unprecedented for a neutron-induced differential cross section measurement on a nuclear target. The results are compared with modern optical model predictions based on phenomenology or microscopic nuclear theory.
Measured differential cross section for elastic scattering on PB208. The first DSYS systematic error is from the uncertainty in the contributions from multiple scattering corrections and the second DSYS refers to the cross section uncertainty due to the uncertainty in the angle measurement.
Measured differential cross section for elastic scattering on C12. The first DSYS systematic error is from the uncertainty in the contributions from multiple scattering corrections and the second DSYS refers to the cross section uncertainty due to the uncertainty in the angle measurement.
A study of the deuteron breakup reaction $pd \to (pp)n$ with forward emission of a fast proton pair with small excitation energy $E_{pp}<$ 3 MeV has been performed at the ANKE spectrometer at COSY--J\ulich. An exclusive measurement was carried out at six proton--beam energies $T_p=$~0.6,~0.7,~0.8,~0.95,~1.35, and 1.9 GeV by reconstructing the momenta of the two protons. The differential cross section of the breakup reaction, averaged up to $8^{\circ}$ over the cm polar angle of the total momentum of the $pp$ pairs, has been obtained. Since the kinematics of this process is quite similar to that of backward elastic $pd \to dp$ scattering, the results are compared to calculations based on a theoretical model previously applied to the $pd \to dp$ process.
The measured cross section of the process P DEUT --> P P N in the interval E(PP) < 3 MeV versus the proton beam energy.
Differential cross sections for quasi-free Compton scattering from the proton and neutron bound in the deuteron have been measured using the Glasgow/Mainz tagging spectrometer at the Mainz MAMI accelerator together with the Mainz 48 cm $\oslash$ $\times$ 64 cm NaI(Tl) photon detector and the G\"ottingen SENECA recoil detector. The data cover photon energies ranging from 200 MeV to 400 MeV at $\theta^{LAB}_\gamma=136.2^\circ$. Liquid deuterium and hydrogen targets allowed direct comparison of free and quasi-free scattering from the proton. The neutron detection efficiency of the SENECA detector was measured via the reaction $p(\gamma,\pi^+ n)$. The "free" proton Compton scattering cross sections extracted from the bound proton data are in reasonable agreement with those for the free proton which gives confidence in the method to extract the differential cross section for free scattering from quasi-free data. Differential cross sections on the free neutron have been extracted and the difference of the electromagnetic polarizabilities of the neutron have been obtained to be $\alpha-\beta= 9.8\pm 3.6(stat){}^{2.1}_1.1(syst)\pm 2.2(model)$ in units $10^{-4}fm^3$. In combination with the polarizability sum $\alpha +\beta=15.2\pm 0.5$ deduced from photoabsorption data, the neutron electric and magnetic polarizabilities, $\alpha_n=12.5\pm 1.8(stat){}^{+1.1}_{-0.6}\pm 1.1(model)$ and $\beta_n=2.7\mp 1.8(stat){}^{+0.6}_{-1.1}(syst)\mp 1.1(model)$ are obtained. The backward spin polarizability of the neutron was determined to be $\gamma^{(n)}_\pi=(58.6\pm 4.0)\times 10^{-4}fm^4$.
Energy dependence of the free-proton differential cross section.
Energy dependence of the quasi-free proton differential cross section.
Energy dependence of the triple differential cross section w.r.t. the scattered proton.
The reaction pp -> pp eta was measured at excess energies of 15 and 41 MeV at an external target of the Juelich Cooler Synchrotron COSY with the Time of Flight Spectrometer. About 25000 events were measured for the excess energy of 15 MeV and about 8000 for 41 MeV. Both protons of the process pp eta were detected with an acceptance of nearly 100% and the eta was reconstructed by the missing mass technique. For both excess energies the angular distributions are found to be nearly isotropic. In the invariant mass distributions strong deviations from the pure phase space distributions are seen.
Angular distribution of the ETA in the CM frame.
Angular distribution of the P P momentum in the CM frame.
Squared P P invariant mass distribution.