We report the observation of a spin 4 resonance from the analysis of the reaction π − p→ K + K − n. The mass and width of the h-meson were determined to be 2050 MeV and 225 MeV. The quantum numbers are J P = 4 + , C = +1 and very probably I G = 0 + .
No description provided.
Differential and total cross sections for π + absorption on 12 C are presented at incident pion energies of 100 and 165 MeV. This is the first time that this reaction has been measured with a combination of good energy and angle information over an extensive region of phase space. Results are compared to extensive Monte Carlo simulations in order to investigate the role of two- and multinucleon absorption processes in this nucleus. Signatures of ISI and FSI in the pion absorption process are also investigated, in order to explain the complex reaction mechanism implied by the data.
Axis error includes +- 20/20 contribution (Relative systematic uncertainty).
Axis error includes +- 20/20 contribution (Relative systematic uncertainty).
Results of two spark chamber experiments on A 2 − production in the reaction π − p → K − K S 0 (→ π + π − )p at 9.8 and 18.8 GeV are presented. Decay angular distributions and differential cross sections are given, and the energy dependence of the cross section σ [ π − p → A 2 − (→ K − K 0 )p] is compared with results from π − p → A 2 − (→ 3 π )p.
FITS WITH CONSTANT BACKGROUNDS. A TWO-PARAMETER LINEAR BACKGROUND GIVES MUCH LARGER ERRORS.
INTEGRATED OVER M(K AK) = 1.20 TO 1.42 GEV.
No description provided.
Approximately 350 A 2 + events have been observed in the reaction π + p → K + K S 0 p ( K S 0 → π + π − ) at an incident π + laboratory momentum of 12.7 GeV/ c . The events are distributed over a range of four-momentum transfer squared 0.01 ⩽ − t ⩽ 0.60 (GeV/ c ) 2 and K + K S 0 mass 1.11 ⩽ m K + K S 0 ⩽ 1.51 GeV . A Breit-Wigner fit to the mass spectrum yields a mass for the A 2 + , m A 2 + = 1.324 ± 0.005 GeV, and a width Γ 0 = 0.110 ± 0.018 GeV. We find a cross section σ ( π + p → A 2 + p) = 1.71 ± 0.30 μb referring to the above-mentioned mass and t range and A 2 + → K + K S O with K S 0 → π + π − . The spin-space density matrix in the Gottfried-Jackson frame is practically saturated by ϱ 11 ⋍ ϱ 1−1 = 1 2 suggesting natural parity exchanges only. There is a forward dip in the angular distribution consistent with dominance of s -channel net helicity flip amplitudes and ϱ and f Regge exchanges suffice to describe adequately our differential cross sections.
SUBTRACTED BACKGROUND IS PHASE SPACE. FITTED D(SIG)/DT SLOPE IS 9.5 +- 0.9 GEV**-2.
SUBTRACTED BACKGROUND IS AN S-WAVE WITH SLOPE OF 8 GEV**-2. FITTED D(SIG)/DT SLOPE IS 6.9 +- 0.6 GEV**-2.
FROM D(SIG)/DT. ERROR INCLUDES 15 PCT SCALE ERROR ADDED QUADRATICALLY.
We have measured 618 K + p → π + K S 0 p events at 12.7 GeV/ c incident lab momentum, mass range 790 ⩽ m π + K s 0 ⩽ 990 MeV and t range 0.01 ⩽ − t ⩽ 0.60 (GeV/ c ) 2 . The π + K S 0 mass spectrum is dominated by the K ∗+ (892) resonance and a Breit-Wigner fit yields a mass m = 893.5 ± 1.1 MeV and a width Γ = 33.2 ± 4.1 MeV which is much narrower than measured hitherto. The t distribution of K ∗+ (892) events shows a dip in the forward direction and an exponential fall off thereafter, consistent with dominance of helicity flip amplitudes. The spin density matrix is almost saturated by ρ 11 and ρ 1−1 which are very close to their maximum allowed value of 1 2 throughout the measured t range except in the very forward direction where ρ 00 and Re ρ 10 deviate from zero. Natural parity exchanges, therefore, dominate with unnatural parity exchanges being restricted to a small region in the forward direction. A Regge pole analysis of the differential cross sections of the present measurement in conjunction with previously measured total cross sections supports the f-coupled-pomeron hypothesis.
SUBTRACTED BACKGROUND IS PHASE SPACE.
SUBTRACTED BACKGROUND IS AN INCOHERENT S-WAVE WITH EXPONENTIAL T-DEPENDENCE WITH SLOPE OF 6 GEV**-2.
Axis error includes +- 15/15 contribution.
$Z$ boson events at the Large Hadron Collider can be selected with high purity and are sensitive to a diverse range of QCD phenomena. As a result, these events are often used to probe the nature of the strong force, improve Monte Carlo event generators, and search for deviations from Standard Model predictions. All previous measurements of $Z$ boson production characterize the event properties using a small number of observables and present the results as differential cross sections in predetermined bins. In this analysis, a machine learning method called OmniFold is used to produce a simultaneous measurement of twenty-four $Z$+jets observables using $139$ fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV collected with the ATLAS detector. Unlike any previous fiducial differential cross-section measurement, this result is presented unbinned as a dataset of particle-level events, allowing for flexible re-use in a variety of contexts and for new observables to be constructed from the twenty-four measured observables.
Differential cross-section in bins of dimuon $p_\text{T}$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of dimuon rapidity. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading muon $p_\mathrm{T]$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
An angular analysis of the $B^{0}\rightarrow K^{*0}(\rightarrow K^{+}\pi^{-})\mu^{+}\mu^{-}$ decay is presented. The dataset corresponds to an integrated luminosity of $3.0\,{\mbox{fb}^{-1}}$ of $pp$ collision data collected at the LHCb experiment. The complete angular information from the decay is used to determine $C\!P$-averaged observables and $C\!P$ asymmetries, taking account of possible contamination from decays with the $K^{+}\pi^{-}$ system in an S-wave configuration. The angular observables and their correlations are reported in bins of $q^2$, the invariant mass squared of the dimuon system. The observables are determined both from an unbinned maximum likelihood fit and by using the principal moments of the angular distribution. In addition, by fitting for $q^2$-dependent decay amplitudes in the region $1.1<q^{2}<6.0\mathrm{\,Ge\kern -0.1em V}^{2}/c^{4}$, the zero-crossing points of several angular observables are computed. A global fit is performed to the complete set of $C\!P$-averaged observables obtained from the maximum likelihood fit. This fit indicates differences with predictions based on the Standard Model at the level of 3.4 standard deviations. These differences could be explained by contributions from physics beyond the Standard Model, or by an unexpectedly large hadronic effect that is not accounted for in the Standard Model predictions.
CP-averaged angular observables evaluated by the unbinned maximum likelihood fit.
CP-averaged angular observables evaluated by the unbinned maximum likelihood fit. The first uncertainties are statistical and the second systematic.
CP-asymmetric angular observables evaluated by the unbinned maximum likelihood fit. The first uncertainties are statistical and the second systematic.
A measurement of novel event shapes quantifying the isotropy of collider events is performed in 140 fb$^{-1}$ of proton-proton collisions with $\sqrt s=13$ TeV centre-of-mass energy recorded with the ATLAS detector at CERN's Large Hadron Collider. These event shapes are defined as the Wasserstein distance between collider events and isotropic reference geometries. This distance is evaluated by solving optimal transport problems, using the 'Energy-Mover's Distance'. Isotropic references with cylindrical and circular symmetries are studied, to probe the symmetries of interest at hadron colliders. The novel event-shape observables defined in this way are infrared- and collinear-safe, have improved dynamic range and have greater sensitivity to isotropic radiation patterns than other event shapes. The measured event-shape variables are corrected for detector effects, and presented in inclusive bins of jet multiplicity and the scalar sum of the two leading jets' transverse momenta. The measured distributions are provided as inputs to future Monte Carlo tuning campaigns and other studies probing fundamental properties of QCD and the production of hadronic final states up to the TeV-scale.
IRing2 for HT2>=500 GeV, NJets>=2
IRing2 for HT2>=500 GeV, NJets>=3
IRing2 for HT2>=500 GeV, NJets>=4
We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.
Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.
Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.
Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.
Jet substructure quantities are measured using jets groomed with the soft-drop grooming procedure in dijet events from 32.9 fb$^{-1}$ of $pp$ collisions collected with the ATLAS detector at $\sqrt{s} = 13$ TeV. These observables are sensitive to a wide range of QCD phenomena. Some observables, such as the jet mass and opening angle between the two subjets which pass the soft-drop condition, can be described by a high-order (resummed) series in the strong coupling constant $\alpha_S$. Other observables, such as the momentum sharing between the two subjets, are nearly independent of $\alpha_S$. These observables can be constructed using all interacting particles or using only charged particles reconstructed in the inner tracking detectors. Track-based versions of these observables are not collinear safe, but are measured more precisely, and universal non-perturbative functions can absorb the collinear singularities. The unfolded data are directly compared with QCD calculations and hadron-level Monte Carlo simulations. The measurements are performed in different pseudorapidity regions, which are then used to extract quark and gluon jet shapes using the predicted quark and gluon fractions in each region. All of the parton shower and analytical calculations provide an excellent description of the data in most regions of phase space.
Data from Fig 6a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 6b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 6c. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.