The reactionsπ−p→K0∑0(1385) andπ−p→K+∑−(1385) are studied at an incident momentum of 3.95 GeV/c using data from a high statistics bubble chamber experiment corresponding to approximately 90 events/μb. The total and differential cross sections and the density matrix elements of the Σ(1385) are presented. The results are compared with those obtained for the related processesπpp→K+∑+(1385) and\(K^ -p \to \pi ^ \mp\sum ^ \pm(1385)\) in this energy range. Evidence is presented for the existence of production mechanisms with exotic exchanges in thet channel.
FROM THE CHANNEL PI- P --> LAMBDA K0 PI0 WHICH HAS A CROSS SECTION OF 72 +- 4 MUB.
FROM THE CHANNEL PI- P --> LAMBDA K+ PI- WHICH HAS A CROSS SECTION OF 79 +- 3 MUB.
FORWARD CROSS SECTION.
A tagged photon beam (2.8<Eγ<4.8 GeV) and multiparticle spectrometer have been used to study the photoproduction in hydrogen ofK+Λ(1520). Precise values for the mass and width of the Λ(1520) are given. The total cross-section is found to fall with increasing photon energy like (6.5±0.7)Eγ−(2.1±0.2) μb. The differential cross sectiondσ/dt indicates peripheral forward production and exhibits no evidence for shrinkage when compared with higher energy data. The Λ(1520) spin density matrix shows thatK exchange alone cannot account for the production mechanism. The reaction is found to resemble the process γp→K+ Λ(1115) in all measurable respects.
FITTED CROSS SECTION ENERGY DEPENDENCE IS SIG = (6.7 +- 0.7 MUB*GEV**2) * P**(-2.1 +- 0.2), INCLUDING HIGHER ENERGY DATA.
EXPONENTIAL SLOPE IS 6.1 +- 2.0 GEV**-2 FOR -T = 0.2 TO 0.7 GEV**2.
No description provided.
We have measured 618 K + p → π + K S 0 p events at 12.7 GeV/ c incident lab momentum, mass range 790 ⩽ m π + K s 0 ⩽ 990 MeV and t range 0.01 ⩽ − t ⩽ 0.60 (GeV/ c ) 2 . The π + K S 0 mass spectrum is dominated by the K ∗+ (892) resonance and a Breit-Wigner fit yields a mass m = 893.5 ± 1.1 MeV and a width Γ = 33.2 ± 4.1 MeV which is much narrower than measured hitherto. The t distribution of K ∗+ (892) events shows a dip in the forward direction and an exponential fall off thereafter, consistent with dominance of helicity flip amplitudes. The spin density matrix is almost saturated by ρ 11 and ρ 1−1 which are very close to their maximum allowed value of 1 2 throughout the measured t range except in the very forward direction where ρ 00 and Re ρ 10 deviate from zero. Natural parity exchanges, therefore, dominate with unnatural parity exchanges being restricted to a small region in the forward direction. A Regge pole analysis of the differential cross sections of the present measurement in conjunction with previously measured total cross sections supports the f-coupled-pomeron hypothesis.
SUBTRACTED BACKGROUND IS PHASE SPACE.
SUBTRACTED BACKGROUND IS AN INCOHERENT S-WAVE WITH EXPONENTIAL T-DEPENDENCE WITH SLOPE OF 6 GEV**-2.
Axis error includes +- 15/15 contribution.
We have analysed about 85 000 fast Λ 0 events, obtained in a fast proton triggered experiment performed at the CERN-Ω spectrometer at 9 and 12 GeV/ c incident π − beam. Nearly 2500 Λ 0 K + π − events have been isolated. We find strong production of quasi-two-body processes Λ 0 K ∗0 and ∑ ∗− K + consistent with u -channel hyperon exchange. Results on Λ 0 polarization, K ∗0 decay parameters and differential cross sections are given for Λ 0 K ∗0 (892) and Λ 0 K ∗0 (1430) final states. A comparison is made with the associated backward Λ 0 (1520) K ∗0 production seen in the four-prong reaction π − p→pK − K + π − obtained in the same experiment.
No description provided.
No description provided.
EXPONENTIAL FIT TO DN/DU.
Production of pions, kaons, protons and antiprotons has been studied in e + e − annihilations at 12 and 30 GeV centre of mass energy using time of flight techniques. The fractional yield of charged kaons and baryons appears to rise with outgoing particle momentum. At our highest energy at least 40% of e + e − annihilations into hadrons are estimated to contain baryons.
No description provided.
No description provided.
No description provided.
Hoping to find resonant structures in the momentum dependence of π − p elastic scattering we have measured the differential cross section for this reaction at c.m. angles near 90°. An intense pion beam (≈ 10 7 π /s) has been used, together with a high incident momentum resolution (d P / P ≈ 2 × 10 −4 ), to scan the region of laboratory momenta from 5.75 to 13.02 GeV/ c (c.m. energy from 3.42 to 5.03 GeV). The sensitivity attained by the experiment is such that signals would have been seen corresponding to the formation of non-strange baryon resonances having width larger than ≈ 0.1 MeV and elasticity larger than a few per cent. Within these limits no resonances were sighted.
ENERGY SCAN IN BINS OF D(PLAB)/PLAB OF 5*10**-4 AT FOUR FIXED ANGLES (COS(THETA) = -0.4 TO 0.4).
A high-statistics search for resonances in the π − p total cross section has been carried out over the incident momentum region from 2 to 14 GeV/ c . The measurements were performed with a transmission technique using multiwire proportional chambers in place of the conventional counter arrays. A microprocessor unit was used for the on-line analysis of the data, allowing a total of ≈ 50 000 events to be examined in a 300 ms burst. The search aimed at detecting the possible formation in π − p collisions of narrow non-strange baryon resonances. The momentum region was uniformly scanned with a total of ≈4500 mmeasurements in fixed fractional momentum steps of d P / P = 5 × 10 −4 . The relative statistical precision of each measurement was d σ / σ = ±0.3%. Within these limits no significant structure was detected.
ENERGY SCAN IN MOMENTUM STEPS OF D(PLAB)/PLAB OF 5*10**-4.
The spin dependence of π 0 inclusive production by 24 GeV/ c protons has been measured using a polarized target for Fhe Feynman x near 0 in the transverse momentum range 1.0 < p T < 2.5 GeV/ c . The results indicate a negative updown asymmetry growing strongly with p T and greater than 50% in absolute value for p T greater than 2 GeV/ c .
No description provided.
New data on the inclusive production of the non-strange resonances ϱ0(770), ω(783), ϕ(1020) andf(1270) inK− p interactions at 32 GeV/c are presented. The inclusive production cross sections are equal to (4.32±0.72) mb, (3.7±1.4) mb, (0.65±0.10) mb and (0.91±0.35) mb respectively. Estimates of the topological cross sections are also obtained. The invariant and non-invariantx-distributions for the vector mesons ϱ0 and ϕ indicate the prevalence of forward resonance production in the c.m. system. For the tensorf-meson the rapidity andx-distributions are presented. Thet′-distributions for ϱ0, ϕ, andf have exponential slopes of 0.6±0.1 GeV−2, 1.2±0.2 GeV−2, and 0.8±0.5 GeV−2 respectively. The exponential slope ofpT2-distribution of thef-meson is equal to (2.3±0.5) GeV−2.
.
.
.
The reactionsπ−p→K0(890) Λ,K0(890)Σ0 andK0(890)Σ0 are studied at an incident momentum of 3.95 GeV/c using data from a high statistics bubble chamber experiment corresponding to ∼90 events/μb. The differential cross sections, density matrix elements of the vector meson and hyperon polarizations are presented. A transversity amplitude analysis is performed for each of the reactions. The results are compared with those obtained for the SU(3) related processesK−p→ϕΔ, ϕΣ0, ϕΣ0(1385) andϱ−Σ+(1385) and with predictions of the additive quark model and SU(6) sum rules.
BREIT-WIGNER FIT WITH BACKGROUND POLYNOMIAL.
BACKWARD CROSS SECTION.
TOTAL CROSS SECTION USING SLICING TECHNIQUE. FORWARD (-TP < 1.2 GEV**2) CROSS SECTION IS 25 +- 2 MUB: DOUBLE MASS CUT GIVES 20 +- 7 PCT BACKGROUND CONTAMINATION.