The asymmetry A LL for pp elastic scattering has been measured at 650 and 800 MeV in the region of Coulomb-nuclear interference. The real part of the double-spin-flip amplitude extracted from these data completes our determination of the forward pp scattering amplitudes at these energies. Comparison with the predictions of forward dispersion relations reveals a discrepancy in the spin-dependent channels at 650 MeV.
No description provided.
No description provided.
The spin-spin correlation parameters CLL=(L,L;0,0)=ALL and CSL=(S,L;0,0)=ASL for np elastic scattering were measured for incident polarized-neutron–beam kinetic energies of 484 and 634 MeV over the center-of-mass angles from ≃80° to 180°. The data are important for determining the I=0 nucleon-nucleon amplitudes. These results are compared with phase-shift calculations.
No description provided.
No description provided.
No description provided.
The asymmetry ANN for pp elastic scattering has been measured at 800 and 650 MeV in the region of Coulomb-nuclear interference. The data have been analyzed to extract the real part of a spin-spin scattering amplitude. Results are compared with the predictions of forward dispersion relations. They disagree significantly at 650 MeV.
No description provided.
No description provided.
We present first measurements of total cross section differences Δσ T and Δσ L for a polarized neutron beam transmitted through a polarized proton target. Measurements were carried out at SATURNE II, at 0.63, 0.88, 0.98 and 1.08 GeV. The results are compared with Δσ L data points deduced from p-d and p-p transmission experiments, and with phase shift analyses predictions. The present results together with the corresponding pp data yield two of the three spin dependent forward scattering amplitudes for isospin I =0.
Statistical errors are statistics and random fluctuations. Systematic error contains uncertainties in beam and target polarizations, hydrogen content of the target, and residual error due to misalignment.
We have measured the difference between the pp total cross sections for parallel and antiparallel longitudinal spin states at beam momenta of 2.75, 2.92, 3.25, and 3.48 GeV/c. These results reveal possible new structure in this momentum range.
Data read from graph. Statistical errors only.
Final results are presented of the proton-proton elastic-scattering spin parameters CSS=(S,S;0,0) and CLS=(L,S;0,0) for thetac.m.=8°–49° and of CLL=(L,L;0,0) for thetac.m.=8°–90° at 11.75 GeV/c. Comparisons to theoretical models are also made.
No description provided.
Angular distributions of the spin-correlation parameters Asl and All for the reaction pp→π+d have been measured at pion center-of-mass angles 40°≤θπ+*≤130° at incident energies of 500, 650, and 800 MeV. Additional measurements of All were made at 600, 700, and 750 MeV. The results of the experiment are compared with the predictions of several unified coupled-channel calculations and partial-wave analyses. While the latest partial-wave analyses were found to fit the data reasonably well, all except one of the various model predictions not only do not fit the data well, but also tend to be in disagreement with each other. The data show no clear sign of a need for proposed dibaryon resonances.
No description provided.
No description provided.
No description provided.
Measurements of the spin transfer parameters, K NN and K LL , at 500, 650 and 800 MeV are presented for the reaction p d → n pp at 0°. The data are useful input to the NN data base and indicate that the quasi-free charge exchange (CEX) reaction us a useful mechanism for producing neutrons with at least 40% polarization at energies as low as 500 MeV.
QUASI-FREE NP ELASTIC SCATTERING.
Measurements of the spin observables ANN(90∘) and AN0(90∘) for the reaction pp→dπ+ between 500 and 800 MeV are presented and compared with previous measurements and with predictions from theories and a partial-wave analysis. These are the first available measurements of ANN above 590 MeV.
ANALYSING POWER IS POL.POL(NAME=AN0).
Results are presented of a measurement of the proton-proton elastic-scattering spin parameter CLL=(L,L;0,0) at 11.75 GeV/c and θc.m.=48°−90°. The value of CLL is nearly constant and is approximately -0.16 in this angular region. This behavior is consistent with only one of the many models proposed describing the interaction via the hard scattering of two quarks.
NUMERICAL VALUES OF DATA SUPPLIED BY H. SPINKA.
ESTIMATED VALUE OF CSS (90 DEG) DETERMINED FROM PRESENT DATA ON CLL AND DATA OF CRABB ET AL., (PRL 41, 1257) AND CROSBIE ET AL., (PR D23, 600) FOR CNN VIA THE RELATION CNN-CSS-CLL=1 (90 DEG). ERROR CONTAINS BOTH SYSTEMAT8ICS AND STATISTICS.