None
No description provided.
No description provided.
Results of a spark chamber experiment on elastic scattering of pions on protons are presented and analyzed. The processes studied were π+p at 2.92 GeV/c, and π−p at 3.15, 4.13, and 4.95 GeV/c. The data are fitted to an exponential function of the four-momentum transfer, t, in several different ways in attempts to explore systematic energy and angular dependences. No shrinkage of the diffraction peak is seen in comparing the coefficients of a linear exponential fit for |t|<0.4 (GeV/c)2; at larger |t|, however, the cross section falls off with increasing energy. The large-angle differential cross section is examined for structure and is compared with all other large angle scattering data. The results are compared with proton-proton scattering data over the same energy range and substantial differences between the two processes are evident.
No description provided.
No description provided.
No description provided.
Approximately 60 000 events have been collected in a spark chamber experiment at the CERN Proton Synchrotron which studied elastic diffraction scattering of π--p and p-p at incident momenta of 8.5, 12.4 and 18.4 GeV/c and of π+-p at 8.5 and 12.4 GeV/c. Magnetic analysis of the incoming and diffraction scattered particle, together with measurement of all angles, permitted each event to be determined as elastic subject to three constraints, so that the inelastic background was rejected with. high efficiency, even at the larger momentum, transfers. Much of the data have been processed by the CERN Automatic Flying-Spot DigitizerHPD. A detailed description of the experimental technique and of the methods of analysis is given. The results, together with data from lower energies, confirm the remarkable energy-independence of the shape of the pion-proton diffraction scattering peak up to |t| = 1.5 (GeV/c)2, wheret is the square of the four-momentum transfer, over a range of pion energies from 2 to 18 GeV. Proton-proton scattering does however appear to show a shrinking diffraction peak. In general, the data agree with other experiments using both counter and bubble chamber techniques, but some differences do appear. During the experiment, data were taken which set an upper limit of 2·102 μb/(GeV/c)2 on the differential elastic cross-section dσ/dt over a range of |t| from 20.9 to 23.4 (GeV/c)2 at 13.4 GeV/c incident pion momentum.
'1'. '2'. '3'. '4'.
'1'.
'1'.
A study of π − + p →η + n near threshold shows that the cross section rises linearly with η momentum and that Λ η < 0.9 MeV c 2 (95% confidence limit).
Errors are statistical only.
A spark-chamber experiment on the peripheral production of 9245 pion pairs by 12- and 18-GeV/c incident pions is reported and analyzed in terms of a one-pion-exchange model in which the final state at the nucleon vertex contains generally one or more pions. The relevant dynamics and kinematics appropriate to this problem are reviewed, and the experimental and analysis techniques giving good resolution and detection-bias correction are discussed in some detail. From the results, fair agreement is found between the data and the one-pion-exchange calculation of the ρ0 production cross sections and of the associated missing-mass spectra. The ρ0 is found to be consistent with a single peak, and no evidence of peak splitting is observed. A search for a narrow s-wave dipion resonance is made with negative results. Normalizing to the ρ0 meson, the s-wave π+π− scattering cross section is computed from the abundant low-dipion-mass events, giving a cross section falling smoothly from 50 mb (300 MeV) to about 20 mb (600 MeV). No evidence of an s-wave resonance is found in this range of energies. Below 450 MeV, the pion-pion scattering asymmetry favors backward scattering (by 2½ standard deviations), which is consistent with a negative and falling J=T=0 phase shift. The extrapolated forward-backward asymmetry and the s-wave cross section are both consistent with a J=T=0 phase shift near|90°| at about 750 MeV.
Dipion production cross section under RHO resonance. Errors are statistical only.
Dipion production cross section under RHO resonance. Errors are statistical only.
RHO0 cross section. Errors are statistical only.
An experiment designed to study the π−p total neutral cross section and its breakdown into several channels has been performed at eleven incident pion momenta ranging from 654 to 1247 MeV/c. Angular distributions for the charge exchange π0 and for η0 production are given in terms of Legendre-polynomial expansion coefficients. Forward and backward differential cross sections are presented for the charge-exchange channel and comparisons with recent dispersion-relation predictions for the forward cross section are made.
No description provided.
No description provided.
No description provided.
Total cross sections for π−p→ΛK0 have been measured using optical spark chambers from threshold to 1.13−GeVc beam momentum in 19−MeVc intervals, but with a 1−MeVc resolution in the regions of the ΛK and ΣK thresholds. The behavior near ΛK threshold indicates a significant s-wave contribution, but this experiment is unable to resolve any cusplike behavior in the region of the ΣK thresholds. The cross section shows a broad peak in the vicinity of 1.05−GeVc beam momentum.
No description provided.
Cross sections for resonance production in the reactions π ± p → p π ± π + π − at 16 GeV/ c are determined by a maximum likelihood fit, making use of the measurements of all individual events. The reactions are described by a simple parametrization based on an incoherent superposition of amplitudes for quasi two-body and quasi three-body processes and a non-resonant backgroud. In this way the reflections are accounted for in a consistent way. Thus cross sections are obtained for Δ ++ , Δ 0 , ρ 0 and f 0 production which do not suffer from the uncertainties of background subtraction typical of the usual technique of fitting individual mass distributions.
TWO PARTICLE RESONANCE CROSS SECTIONS.
CHANNEL FRACTIONS FROM THE FITS. THE AUTHORS WARN AGAINST DERIVING CROSS SECTIONS FOR THREE-PARTICLE RESONANCES.
In a study of the missing-mass spectrum near 1 GeV in the reaction π−+p→MM+n at three incident momenta near 2 GeV, we find no evidence for the recently reported narrow neutral mesons at 940, 963, and 1033 MeV.
No description provided.
We report observation of the S* meson in the reaction π−+p→S*+n. The S* decays into ππ and KK and is seen most clearly in the 2π0 channel. A fit to the data gives a sheet-II pole at 987±7−i(24±7) MeV and a relative coupling gS→KKgS→ππ of 3.8 ± 1.0.
AT AROUND K+ K- THRESHOLD.