Inclusive momentum and energy spectra of neutral and charged D-mesons produced in e + e − annihilation at energies near 7 GeV are presented. The slope of the energy spectrum is similar to the charged pion spectrum at the same energy. The inclusive cross section σ(e + e − → D or D + anything) at 7 GeV is 4.8±1.3 nb.
No description provided.
No description provided.
SCALING VARIABLE IS X(P=3,DEF=2*E(P=3)/SQRT(S)) > 0.54.
Final results of our measurements of elastic proton-proton scattering at the CERN Intersecting Storage Rings (ISR) for c.m. energies √ s from 23 to 63 GeV and momentum transfers | t | from 0.8 to 10 GeV 2 are presented. Absolute differential cross sections have been obtained using the split-field magnet detector facility (SFM) at the five standard energies for integrated luminosities ranging from 0.3 to 4.9 (pb) −1 . The rising total cross section is found to define a scale for diffractive phenomena near the forward peak, including the position of the diffraction minimum near t = −1.4 GeV 2 . The cross section at the minimum is strongly energy dependent, approximately as the ratio of the real to imaginary part of the scattering amplitude in the forward direction. The phase of the scattering amplitude is found to change sign near the minimum. The component of diffraction scattering beyond the second maximum has a much weaker t -dependence than expected in simple eikonal or constituent pictures connecting this region to the forward peak. A further break in slope is observed near t = −6 GeV 2 . There is no evidence for another minimum for t values up to 10 GeV 2 .
No description provided.
No description provided.
No description provided.
We present results for the reactions νp→μ−π+p and νp→μ−K+p at energies above 5 GeV. The average cross section for the first reaction between 15 and 40 GeV is (0.80±0.12) × 10−38 cm2 and for events with Mπ+p<1.4 GeV is (0.55±0.08) × 10−38 cm2. The ratio of the cross section for the second reaction to that for the first is 0.017±0.010.
No description provided.
No description provided.
RAPIDITY IS MEASURED IN 'QUARK' REST FRAME DEFINED AS Y(Q)=Y(LAB)-LOG(W**2/M**2) WHERE Y(LAB)=0.5*LOG((E+PL)/(E-PL)).
The elastic proton-helium differential cross sections have been determined for 5 different incident laboratory energies from 40 to 400 GeV in the range 0.003 < l t I < 0.52 (GeV/c)2. The differential cross section drops 4 - 5 orders of magnitude to the first dip at I t I = 0.22 (GeV/c)2. A Glauber analysis is performed on the data. The inelastic intermediate states are found to be important. The shrinkage of the slope of the differential cross section is measured. The rate of shrinkage is twice as large as in the p-p case. Results on the real part of the elastic scattering amplitude at forward angle and at the dip structure ( l t l similar/equal to 0.22) are presented.
No description provided.
No description provided.
No description provided.
In this paper we report measurements of the backward K−p differential cross section at 49 momenta covering the momentum range 476-1084 MeV/c. The statistical precision achieved, typically 2.5%, is an order of magnitude better than previous measurements. The systematic errors for this reaction are about 1%. The differential cross section for the reaction K−p→Σ−π+ where the π+ emerges at 0° has also been measured at 32 momenta with comparable improvement in precision over previous experiments. A partial-wave analysis of the K¯N channels including the new K−p backward elastic data is presented.
No description provided.
No description provided.
Proton-proton elastic scattering at 400 GeV/c has been measured in the region 5.4<−t<14.4 GeV2 with no sign of a second dip or "break." If the data are fitted by exp(At), the slope A decreases from 1.5±0.1 to 0.7±0.2 GeV−2 over the range. At fixed t the 400-GeV/c cross sections are about 0.6 times those at 200 GeV/c in this t range. At fixed θc.m.=15°, dσdt∝s−n where n=9.7±0.3.
No description provided.
No description provided.
None
No description provided.
None
No description provided.
The recoil proton polarization for γ n → π − p was measured around the third resonance region. Both momentum vectors of the proton and the pion were determined by the magnetic spectrometers. The proton polarization was measured by means of proton-carbon scattering in the polarization analyzer located behind the proton spectrometer. Below 900 MeV incident photon energy, our data are consistent with the other existing experimental data ( θ π ∗ = 90° ) and the predictions of partial-wave analyses. Above 1000 MeV, however, a large discrepancy was observed between our data and the predictions of the partial-wave analyses. The discrepancy stands out as the pion c.m. angle increases. A new partial-wave analysis was made for γ n → π − p including our polarization data, and the accuracy of the experimentally determined electromagnetic coupling constant of the third resonances were greatly improved. In particular, a finite amount of the helicity 3 2 amplitude for the γ n → F 15 (1688) resonance was obtained against the predictions of the quark models, by Copley, Karl and Obryk and by Feynman, Kislinger and Ravendal but in agreement with the relativistic quark models of Sugimoto and Toya, and Kubota and Ohta.
No description provided.
Results on exclusive double diffraction dissociation in (N π ) and (N ππ ) final states are reported for neutron-neutron interactions at √ s = 26.4 GeV and for the proton-neutron interactions at √ s = 37.2 GeV. The data have been obtained at the CERN intersecting storage rings using split field magnet detector with proton-deuteron and deuteron-deuteron colliding beams. Factorization is shown to be verified to a very high degree in both mass- and t -differential cross-sections. The data confirm the previously observed rise in the proton-proton double diffractive cross-section as a function of c.m. energy.
26.6 GEV/C INCIDENT BEAMS.
26.6 GEV/C INCIDENT BEAMS.
No description provided.