We present a study of leading protons and antiprotons inp-nucleus and\(\bar p\)-nucleus on Be, Cu, Ag, W, and U targets. The experiment was performed at the CERN-SPS at a beam energy of 120 GeV. For all targets a suppression of secondary antiprotons with respect to protons is observed. The difference between the\(\bar p\) andp spectra increases with decreasing χ-values and the effect is stronger for heavier nuclei. The features of the data are qualitatively consistent with multiple-collisions modesls. The data are analysed in terms of a dual parton model which gives a satisfactory description of leadingp and\(\bar p\) spectra.
No description provided.
The charmonium χ states are observed in both π− and p Be interactions near 200 GeV/c via their radiative decay into J/ψ. The χ(3510) and χ(3555) are produced with roughly equal cross sections in π− collisions while the χ(3555) dominates in p collisions. Simple gluon fusion can account for χ production with incident protons but additional mechanisms are needed for incident π−.
No description provided.
The masses, total widths, and leptonic widths of three triplet s-wave bb¯ states ϒ(4S), ϒ(5S), and ϒ(6S) are determined from measurements of the e+e− annihilation cross section into hadrons for 10.55<W<11.25 GeV. The resonances are identified from potential model results and their properties are obtained with the help of a simplified coupled-channels calculation. We find M(4S)=10.577 GeV, Γ(4S)=25 MeV, Γee(4S)=0.28 keV; M(5S)=10.845 GeV, Γ(5S)=110 MeV, Γee(5S)=0.37 keV; M(6S)=11.02 GeV, Γ(6S)=90 MeV, Γee(6S)=0.16 keV.
VISIBLE CROSS SECTION INTO HADRONS.
The charged-particle multiplicities of hadronic events deriving from produced bottom or charm quarks have been measured in the Mark II detector at PEP in e+e− annihilation at 29GeV. For events containing one semileptonic and one hadronic weak decay, we find multiplicities of 15.2±0.5±0.7 for bottom and 13.0±0.5±0.8 for charm. The corresponding multiplicities of charged particles accompanying the pair of heavy hadrons are 5.2±0.5±0.9 for bottom, and 8.1±0.5±0.9 for charm.
.
.
.
The reaction e + e − → τ + τ − has been measured using the high resolution spectrometer at PEP. The angular distribution shows a forward-backward asymmetry of −(6.1±2.3±0.5)%, corresponding to an axial-vector coupling if g a τ g a e = 0.28 ±0.11± 0.03, in good agreement with the standard model of electroweak interactions. The measured cross section yields ifR ττ = 1.10± 0.03±0.04, consistent with QED and giving QED cutoff parameters of Λ + >92 GeV and Λ − >246 GeV at 95% C.L.
Comparison of total tau pair cross section with O(alpha**3) QED prediction.
Corrected for acceptance backgraound, and O(alpha**3) radiative effects.
Forward-backward asymmetry based on fit to angular distributions.
None
Axis error includes +- 0.0/0.0 contribution (?////).
Axis error includes +- 0.0/0.0 contribution (?////).
Axis error includes +- 0.0/0.0 contribution (?////).
Interactions of 40 GeV/c πp-,K− and\(\bar p\) on Li, C, S, Cu, CsI and Pb were studied with the RISK-streamer chamber spectrometer. We present multiplicities of negatively charged particles, as well as of protons, and the correlations between them. The normalized mean multiplicity of negative particles,R−, depends on\(\bar v\), the average number of inelastic collisions as\(R^ -= (0.73 \pm 0.04) + (0.34 \pm 0.02)\bar v\). The dependence of the normalized dispersion of negative particles,D−/<N−>, on the number of protons favours independent collision models and contradicts the coherent tube picture. The excess of fast positive particles behaves asA0.4 and shows, for the heavier nuclei, a clear correlation with identified protons.
AVERAGE MULTIPLICITIES OF ALL CHARGED PARTICLES.
AVERAGE MULTIPLICITIES OF ALL NEGATIVELY CHARGED PARTICLES.
We have measured the cross sections for e + e − → e + e − , e + e − → μ + μ − , e + e − → γγ and e + e − → hadrons in an energy scan at center of mass energies between 39.79 and 46.72 GeV in 30 MeV steps. New spinless bosons, whose existence has been postulated as a possible means to explain the anomalously large radiative width of the Z 0 found at the CERN SPS p p collider, are ruled out in the scan region. The data are used to set limits on the couplings to lepton, photon and quark pairs of bosons with masses above 46.72 GeV.
SIG(C=SM) is the Standard Model predicted cross section.
We have measured the coherent nuclear production of π+ω systems at 202.5 GeV. This final state is dominated by the B+(1235) meson with a measured mass and full width of 1.271 ± 0.011 GeV and 0.232 ± 0.029 GeV, respectively. A radiative width of 230 ± 60 keV was extracted for the process B+(1235)→π+γ.
DATA REQUESTED FROM THE AUTHORS.
Using the ARGUS detector at DORIS, we have observed the production of F ± mesons in e + e − annihilation at a centre of mass energy of 10 GeV through their subsequent decays into φπ ± and φπ + π − π ± . The values obtained for [ R (e + e − →FX). Branching Ratio] are (1.47 ± 0.32 ± 0.20)% and (1.63 ± 0.42 ± 0.41)% respectively. The observed mass is (1973.6 ± 2.6 ± 3.0) MeV c 2 . The F momentum spectrum is as expected for the fragmentation of c quarks into charmed mesons, but is somewhat softer than for fragmentation into D ∗ mesons. The relevant angular distributions are consistent with a spin-zero assignment of the F meson.
RESULTS OF FITS FOR SPECIFIED DECAY CHANNELS.
ACCEPTANCE CORRECTED FRAGMENTATION FUNCTION FOR THE TWO DECAY CHANNELS COMBINED. X IS PF/PMAX. DATA HAVE BEEN READ FROM THE GRAPH.