We present the general properties of multihadron final states produced by e+e− annihilation at center-of-mass energies from 52 to 57 GeV in the AMY detector at the KEK collider TRISTAN. Global shape, inclusive charged-particle, and particle-flow distributions are presented. Our measurements are compared with QCD+fragmentation models that use either leading-logarithmic parton-shower evolution or QCD matrix elements at the parton level, and either string or cluster fragmentation for hadronization.
Rapidity distribution with respect to the Thrust axis.
Charged particle X distribution.
Charged particle PL distribution.
Total and differential K0 corss sections are presented from e+e− collisions at s=29 GeV in the High Resolution Spectrometer detector. K0 and charged-particle distributions are compared in a study of the hadronization of quarks of known flavor. Ecents of the reaction e+e−→cc¯ are tagged by identifying D*'s while uu¯, dd¯, or ss¯ events are tagged through the identification of a charged particle with fractional momentum near 1. Parton-shower models with cluster and string fragmentation are compared with these data. Also, certain particle scaling tests are performed using the quark-flavor tags. In addition, K0 production in two- and three-jet events is compared to these models.
Corrected Cross Sections (Lund MC used to extrapolate).
R value for K0 production.
K0 differential cross section as function of the fractional energy.
We present data on the production of the baryons Λ,\(\bar \Lambda \),p and of the baryon resonances Σ*+ (1385) and Δ++ (1232) inK+p and π+p interactions at 250 GeV/c. Results are given on total and semi-inclusive cross sections, Feynman-x spectra, transverse momentum distributions and Λ polarization. The data are compared with measurements at lower energies, with deep inclastic lepton nucleon data and with predictions of quark-parton models. The models underestimate Λ production in the central c.m. region, a feature also seen in recent heavy-ion data. This failure can be cured in JETSET 6.3 by adjustment of the di-quark break-up probability.
No description provided.
No description provided.
No description provided.
A measurement of continuum dimuon production in proton-copper collisions at 800-GeV incident energy is presented. The dimuons observed in this experiment cover the mass range from 6.5 to 18 GeV near y=0 in the proton-nucleon center-of-momentum frame. Scaling forms of the cross section for the continuum are compared with the results of other experiments in the context of the parton model and quantum chromodynamics. The present limitations of such scaling comparisons are discussed.
No description provided.
The large amount of data accumulated by the TASSO detector at 35 GeV c.m. energy has been compared with the predictions of the latest generation of perturbative QCD+fragmentation models. By adjustment of the arbitrary parameters of these models, a very good description of the global properties of hadronic events was obtained. No one model gave the best description of all features of the data, each model being better than the others for some observables and worse in other quantities. We interpret these results in terms of the underlying QCD and hadronisation schemes. The trends of the data across the energy range 12.0≦W≦41.5 GeV are generally well reproduced by the models with the parameters optimised at 35 GeV.
The errors include the statistical error and that from the correction procedure.
The errors include the statistical error and that from the correction procedure.
The errors include the statistical error and that from the correction procedure.
We have studied high transverse momentum J/ψ production in p p interactions at s =630 GeV . The measured cross section times branching fraction for J/ψ→μ + μ − production with p T ⩾5 GeV / c and | y |<2.0 is 7.5±0.7±1.2 nb . The event topology is used to establish that there is J/ψ production from both the direct production of c c bound states and the decay of B hadrons. The inferred yield of J/ψ from beauty decays is compatible with our estimates of beauty production in other channels.
.
Data extracted from figure with g3data.
Data extracted from figure with g3data.
Multihadronic e+e− annihilation events at a center-of-mass energy of 29 GeV have been studied with both the original (PEP 5) Mark II and the upgraded Mark II detectors. Detector-corrected distributions from global shape analyses such as aplanarity, Q2-Q1, sphericity, thrust, minor value, oblateness, and jet masses, and inclusive charged-particle distributions including x, rapidity, p⊥, and particle flow are presented. These distributions are compared with predictions from various multihadron event models which use leading-logarithmic shower evolution or QCD matrix elements at the parton level and string or cluster fragmentation for hadronization. The new generation of parton-shower models gives, on the average, a better description of the data than the previous parton-shower models. The energy behavior of these models is compared to existing e+e− data. The predictions of the models at a center-of-mass energy of 93 GeV, roughly the expected mass of the Z0, are also presented.
Aplanarity distribution.
QX Distribution(QX=SQRT(3)*(Q3-Q2)).
The (Q2-Q1) distribution.
None
No description provided.
No description provided.
No description provided.
We compare the p T dependence of pion, kaon and proton production cross sections in the central rapidity region in e + e − annihilation events and in proton-proton collisions at ISR energies. We find similarities both in the p T dependence of cross sections and in the particle composition as a function of p T , in agreement with the hypothesis of a universal mechanism of particle production.
Numerical values requested from authors.
A comparison is made between the properties of the final state hadrons produced in 280 GeV μp interactions and ine+e− annihilation. The Lund model of hadroproduction is used as an aid in understanding the differences observed. The hadron distributions from μp ande+e− interactions are consistent with the quark parton model assumption of environmental independence, provided that the differences in heavy quark production and hard QCD effects in the two processes are taken into account. A comparison with aK+p experiment is also made. Values are also determined for the Lund model parameters σq = 0.410 ± 0.002 ± 0.020 GeV and σ′ = 0.29−0.15 −0.13+0.09+0.10 GeV, controlling the transverse momenta in fragmentation and intrinsic transverse momenta of the struck quark respectively.
With respect to the virtual photon axis.
With respect to the sphericity axis.
With respect to the thrust axis.