QCD studies with e+ e- annihilation data at 172-GeV to 189-GeV.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 16 (2000) 185-210, 2000.
Inspire Record 513476 DOI 10.17182/hepdata.49000

We have studied hadronic events from e+e- annihilation data at centre-of-mass energies of sqrt{s}=172, 183 and 189 GeV. The total integrated luminosity of the three samples, measured with the OPAL detector, corresponds to 250 pb^-1. We present distributions of event shape variables, charged particle multiplicity and momentum, measured separately in the three data samples. From these we extract measurements of the strong coupling alpha_s, the mean charged particle multiplicity and the peak position xi_0 in the xi_p=ln(1/x_p) distribution. In general the data are described well by analytic QCD calculations and Monte Carlo models. Our measured values of alpha_s, and xi_0 are consistent with previous determinations at sqrt{s}=MZ.

20 data tables

Distribution of Thrust.

Distribution of Thrust Major.

Distribution of Thrust Minor.

More…

Forward pi0 meson production at HERA.

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Phys.Lett.B 462 (1999) 440-452, 1999.
Inspire Record 504022 DOI 10.17182/hepdata.43918

High transverse momentum pi0-mesons have been measured with the H1 detector at HERA in deep-inelastic ep scattering events at low Bjorken-x, down to x <~ 4.10^{-5}. The measurement is performed in a region of small angles with respect to the proton remnant in the laboratory frame of reference, namely the forward region, and corresponds to central rapidity in the centre of mass system of the virtual photon and proton. This region is expected to be particularly sensitive to QCD effects in hadronic final states. Differential cross-sections for inclusive pi0-meson production are presented as a function of Bjorken-x and the four-momentum transfer Q^2, and as a function of transverse momentum and pseudorapidity. A recent numerical BFKL calculation and predictions from QCD models based on DGLAP parton evolution are compared with the data.

12 data tables

Axis error includes +- 5/5 contribution (Trigger efficiency).

Axis error includes +- 5/5 contribution (Trigger efficiency).

Axis error includes +- 5/5 contribution (Trigger efficiency).

More…

Study of charm production in Z decays.

The ALEPH collaboration Barate, R. ; Decamp, D. ; Ghez, Philippe ; et al.
Eur.Phys.J.C 16 (2000) 597-611, 2000.
Inspire Record 507422 DOI 10.17182/hepdata.49183

The production rates of D*+-, Ds*+-, D+-, D0 / D0bar, Ds+, and Lambda_c in Z to ccbar decays are measured using the LEP I data sample recorded by the ALEPH detector. The fractional energy spectrum of the D*+- is well described as the sum of three contributions: charm hadronisation, b hadron decays and gluon splitting into a pair of heavy quarks. The probability for a c quark to hadronise into a D*+ is found to be f(c to D*+) = 0.233 +- 0.010 (stat.) +- 0.011 (syst.). The average fraction of the beam energy carried by D*+- mesons in Z to cc events is measured to be < X_E (D*+-) >_cc = 0.4878 +- 0.0046 (stat.) +- 0.0061 (syst.). The D*+- energy and the hemisphere mass imbalance distributions are simultaneously used to measure the fraction of hadronic Z decays in which a gluon splits to a cc pair: n_{gluon to cc} = (3.23 +- 0.48 (stat.) +- 0.53 (syst.) %. The ratio of the Vector/(Vector+Pseudoscalar) production rates in charmed mesons is found to be P_V = 0.595 +- 0.045. The fractional decay width of the Z into cc pairs is determined from the sum of the production rates for various weakly decaying charmed states to be Rc = 0.1738 +- 0.0047 (stat.) +- 0.0116 (syst.).

3 data tables

The differential D*+- production rate. Statistical errors only.

The multiplicity of D*+- events using a MC shape to do the very small extrapolation over the entire X range.

Fraction of hadronic Z0 decays into charm quark pairs summing all the contributions of the fundamental charmed states and including a contribution from baryons not decaying to LAMBDA/C+. The second DSYS error is due to the uncertainty in the branching ratio.


Inclusive production of pi0, eta, eta'(958), K0(S) and Lambda in two- and three-jet events from hadronic Z decays.

The ALEPH collaboration Barate, R. ; Decamp, D. ; Ghez, Philippe ; et al.
Eur.Phys.J.C 16 (2000) 613, 2000.
Inspire Record 507531 DOI 10.17182/hepdata.49106

The production rates and the inclusive cross sections of the isovector meson${\rm \pi^0}$, the isoscalar mesons$\eta$and

25 data tables

Inclusive cross section for PI0 production in hadronic events.

Inclusive cross section for ETA production in hadronic events.

Inclusive cross section for ETAPRIME production in hadronic events.

More…

Measurement of the hadronic photon structure function at LEP1 for values between 9.9-GeV**2 and 284-GeV**2.

The ALEPH collaboration Barate, R. ; Decamp, D. ; Ghez, Philippe ; et al.
Phys.Lett.B 458 (1999) 152-166, 1999.
Inspire Record 499917 DOI 10.17182/hepdata.49109

Inclusive γ ∗ γ interactions to hadronic final states where one scattered electron or positron is detected in the electromagnetic calorimeters have been studied in the LEP 1 data taken by ALEPH from 1991 to 1995. The event sample has been used to measure the hadronic structure function of the photon F 2 γ in three bins with 〈 Q 2 〉 of 9.9, 20.7 and 284 GeV 2 .

10 data tables

The measured values of dsig/dx from the ECAL data in the Q**2 bin 35 to 3000 GeV**2 with a mean of 284 +- 49 GeV**2.

The measured values of dsig/dx from the LCAL data in the Q**2 bin 13 to 44 GeV**2 with a mean of 20.67 +- 016 GeV**2.

The measured values of dsig/dx from the LCAL data in the Q**2 bin 6 to 13 GeV**2 with a mean of 9.93 +- 0.04 GeV**2.

More…

Measurements of the QED structure of the photon.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Alexander, G. ; et al.
Eur.Phys.J.C 11 (1999) 409-425, 1999.
Inspire Record 495378 DOI 10.17182/hepdata.49315

The structure of both quasi-real and highly virtual photons is investigated using the reaction e+e- -> e+e-mu+mu-, proceeding via the exchange of two photons. The results are based on the complete OPAL dataset taken at e+e- centre-of-mass energies close to the mass of the Z boson. The QED structure function F_2^gamma and the differential cross-section dsigdx for quasi-real photons are obtained as functions of the fractional momentum x from the muon momentum which is carried by the struck muon in the quasi-real photon for values of Q**2 ranging from 1.5 to 400 GeV**2. The differential cross-section dsigdx for highly virtual photons is measured for 1.5< Q**2 < 30 GeV**2 and 1.5< P**2 < 20 GeV**2, where Q**2 and P**2 are the negative values of the four-momentum squared of the two photons such that Q**2 > P**2. Based on azimuthal correlations the QED structure functions F_A^gamma and F_B^gamma for quasi-real photons are determined for an average Q**2 of 5.4 GeV**2.

12 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of D* meson cross sections at HERA and determination of the gluon density in the proton using NLO QCD.

The H1 collaboration Adloff, C. ; Anderson, M. ; Andreev, V. ; et al.
Nucl.Phys.B 545 (1999) 21-44, 1999.
Inspire Record 481112 DOI 10.17182/hepdata.44123

With the H1 detector at the ep collider HERA, D* meson production cross sections have been measured in deep inelastic scattering with four-momentum transfers Q^2>2 GeV2 and in photoproduction at energies around W(gamma p)~ 88 GeV and 194 GeV. Next-to-Leading Order QCD calculations are found to describe the differential cross sections within theoretical and experimental uncertainties. Using these calculations, the NLO gluon momentum distribution in the proton, x_g g(x_g), has been extracted in the momentum fraction range 7.5x10^{-4}< x_g <4x10^{-2} at average scales mu^2 =25 to 50 GeV2. The gluon momentum fraction x_g has been obtained from the measured kinematics of the scattered electron and the D* meson in the final state. The results compare well with the gluon distribution obtained from the analysis of scaling violations of the proton structure function F_2.

13 data tables

Total cross section for DIS D*+- production in the specified kinemtaic range.

DIS cross section as a function of the transverse D* momentum in the laboratory frame.

DIS cross section as a function of the transverse D* momentum in the hadronic centre-of-mass frame.

More…

Version 2
Forward jet and particle production at HERA

The H1 collaboration Adloff, C. ; Anderson, M. ; Andreev, V. ; et al.
Nucl.Phys.B 538 (1999) 3-22, 1999.
Inspire Record 476801 DOI 10.17182/hepdata.44172

Single particles and jets in deeply inelastic scattering at low x are measured with the H1 detector in the region away from the current jet and towards the proton remnant, known as the forward region. Hadronic final state measurements in this region are expected to be particularly sensitive to QCD evolution effects. Jet cross-sections are presented as a function of Bjorken-x for forward jets produced with a polar angle to the proton direction, theta, in the range 7 < theta < 20 degrees. Azimuthal correlations are studied between the forward jet and the scattered lepton. Charged and neutral single particle production in the forward region are measured as a function of Bjorken-x, in the range 5 < theta < 25 degrees, for particle transverse momenta larger than 1 GeV. QCD based Monte Carlo predictions and analytical calculations based on BFKL, CCFM and DGLAP evolution are compared to the data. Predictions based on the DGLAP approach fail to describe the data, except for those which allow for a resolved photon contribution.

11 data tables

Forward Jet cross section. Axis error includes +- 7/7 contribution (Dependence of the model used to correct the data).

Forward Di-jet cross section. Axis error includes +- 7/7 contribution (Dependence of the model used to correct the data).

Data from Figure 3a on charged particle production

More…

Diffractive dijet production at HERA

The H1 collaboration Adloff, C. ; Anderson, M. ; Andreev, V. ; et al.
Eur.Phys.J.C 6 (1999) 421-436, 1999.
Inspire Record 474949 DOI 10.17182/hepdata.44206

Interactions of the type ep -> eXY are studied, where the component X of the hadronic final state contains two jets and is well separated in rapidity from a leading baryonic system Y. Analyses are performed of both resolved and direct photoproduction and of deep-inelastic scattering with photon virtualities in the range 7.5 < Q^2 < 80 GeV^2. Cross sections are presented where Y has mass M_Y < 1.6 GeV, the squared four-momentum transferred at the proton vertex satisfies |t| < 1 GeV^2 and the two jets each have transverse momentum p^jet_T > 5 GeV relative to the photon direction in the rest frame of X. Models based on a factorisable diffractive exchange with a gluon dominated structure, evolved to a scale set by the transverse momentum p^hat_T of the outgoing partons from the hard interaction, give good descriptions of the data. Exclusive qqbar production, as calculated in perturbative QCD using the squared proton gluon density, represents at most a small fraction of the measured cross section. The compatibility of the data with a breaking of diffractive factorisation due to spectator interactions in resolved photoproduction is investigated.

6 data tables

Transverse momentum distribution for two jet production in photoproduction events (one entry per jet).

Transverse momentum distribution for two jet production in DIS events (one entry per jet).

Differential pseudo rapidity distribution in the lab frame for photoproduction data (one entry per jet).

More…

Measurements of flavour dependent fragmentation functions in Z0 --> q anti-q events.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Eur.Phys.J.C 7 (1999) 369-381, 1999.
Inspire Record 472637 DOI 10.17182/hepdata.49410

Fragmentation functions for charged particles in Z -> qq(bar) events have been measured for bottom (b), charm (c) and light (uds) quarks as well as for all flavours together. The results are based on data recorded between 1990 and 1995 using the OPAL detector at LEP. Event samples with different flavour compositions were formed using reconstructed D* mesons and secondary vertices. The \xi_p = ln(1/x_E) distributions and the position of their maxima \xi_max are also presented separately for uds, c and b quark events. The fragmentation function for b quarks is significantly softer than for uds quarks.

9 data tables

Fragmentation function for 'uds-quark' events.

Fragmentation function for 'c-quark' events.

Fragmentation function for 'b-quark' events.

More…