A search is presented for a heavy scalar ($H$) or pseudo-scalar ($A$) predicted by the two-Higgs-doublet models, where the $H/A$ is produced in association with a top-quark pair ($t\bar{t}H/A$), and with the $H/A$ decaying into a $t\bar{t}$ pair. Events are selected requiring exactly one or two opposite-charge electrons or muons. Data-driven corrections are applied to improve the modelling of the $t\bar{t}$+jets background in the regime with high jet and $b$-jet multiplicities. These include a novel multi-dimensional kinematic reweighting based on a neural network trained using data and simulations. An $H/A$-mass parameterised graph neural network is trained to optimise the signal-to-background discrimination. In combination with the previous search performed by the ATLAS Collaboration in the multilepton final state, the observed upper limits on the $t\bar{t}H/A \rightarrow t\bar{t}t\bar{t}$ production cross-section at 95% confidence level range between 14 fb and 5.0 fb for an $H/A$ with mass between 400 GeV and 1000 GeV, respectively. Assuming that both the $H$ and $A$ contribute to the $t\bar{t}t\bar{t}$ cross-section, $\tanβ$ values below 1.7 or 0.7 are excluded for a mass of 400 GeV or 1000 GeV, respectively. The results are also used to constrain a model predicting the pair production of a colour-octet scalar, with the scalar decaying into a $t\bar{t}$ pair.
A search for events with one displaced vertex from long-lived particles using data collected by the ATLAS detector at the Large Hadron Collider is presented, using 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 13$ TeV recorded in 2015-2018. The search employs techniques for reconstructing vertices of long-lived particles decaying into hadronic jets in the muon spectrometer displaced between 3 m and 14 m from the primary interaction vertex. The observed number of events is consistent with the expected background and limits for several benchmark signals are determined. A scalar-portal model and a Higgs-boson-portal baryogenesis model are considered. A dedicated analysis channel is employed to target Z-boson associated long-lived particle production, including an axion-like particle and a dark photon model. For the Higgs boson model, branching fractions above 1% are excluded at 95% confidence level for long-lived particle proper decay lengths ranging from 5 cm to 40 m. For the photo-phobic axion-like particle model considered, this search produces the strongest limits to date for proper decay lengths greater than $\mathcal{O}(10)$ cm.
This Letter presents a search for highly ionizing magnetic monopoles in 262$~\mu$b$^{-1}$ of ultraperipheral Pb+Pb collision data at $\sqrt{s_{_\textrm{NN}}}=5.36$ TeV collected by the ATLAS detector at the LHC. A new methodology that exploits the properties of clusters of hits reconstructed in the innermost silicon detector layers is introduced to study highly ionizing particles in heavy-ion data. No significant excess above the background, which is estimated using a data-driven technique, is observed. Using a nonperturbative semiclassical model, upper limits at 95% confidence level are set on the cross-section for pair production of monopoles with a single Dirac magnetic charge in the mass range of 20-150 GeV. The search significantly improves on the previous cross-section limits for production of low-mass monopoles in ultraperipheral Pb+Pb collisions.
A search for single production of a vector-like quark $Q$, which could be either a singlet $T$, with charge $\tfrac23$, or a $Y$ from a $(T,B,Y)$ triplet, with charge $-\tfrac43$, is performed using data from proton-proton collisions at a centre-of-mass energy of 13 TeV. The data correspond to the full integrated luminosity of 140 fb$^{-1}$ recorded with the ATLAS detector during Run 2 of the Large Hadron Collider. The analysis targets $Q \to Wb$ decays where the $W$ boson decays leptonically. The data are found to be consistent with the expected Standard Model background, so upper limits are set on the cross-section times branching ratio, and on the coupling of the $Q$ to the Standard Model sector for these two benchmark models. Effects of interference with the Standard Model background are taken into account. For the singlet $T$, the 95% confidence level limit on the coupling strength $κ$ ranges between 0.22 and 0.52 for masses from 1150 to 2300 GeV. For the $(T,B,Y)$ triplet, the limits on $κ$ vary from 0.14 to 0.46 for masses from 1150 to 2600 GeV.
This article reports on a search for dijet resonances using $132$ fb$^{-1}$ of $pp$ collision data recorded at $\sqrt{s} = 13$ TeV by the ATLAS detector at the Large Hadron Collider. The search is performed solely on jets reconstructed within the ATLAS trigger to overcome bandwidth limitations imposed on conventional single-jet triggers, which would otherwise reject data from decays of sub-TeV dijet resonances. Collision events with two jets satisfying transverse momentum thresholds of $p_{\textrm{T}} \ge 85$ GeV and jet rapidity separation of $|y^{*}|<0.6$ are analysed for dijet resonances with invariant masses from $375$ to $1800$ GeV. A data-driven background estimate is used to model the dijet mass distribution from multijet processes. No significant excess above the expected background is observed. Upper limits are set at $95\%$ confidence level on coupling values for a benchmark leptophobic axial-vector $Z^{\prime}$ model and on the production cross-section for a new resonance contributing a Gaussian-distributed line-shape to the dijet mass distribution.
A model-agnostic search for Beyond the Standard Model physics is presented, targeting final states with at least four light leptons (electrons or muons). The search regions are separated by event topology and unsupervised machine learning is used to identify anomalous events in the full 140 fb$^{-1}$ of proton-proton collision data collected with the ATLAS detector during Run 2. No significant excess above the Standard Model background expectation is observed. Model-agnostic limits are presented in each topology, along with limits on several benchmark models including vector-like leptons, wino-like charginos and neutralinos, or smuons. Limits are set on the flavourful vector-like lepton model for the first time.
This paper presents a measurement of fiducial and differential cross-sections for $W^{+}W^{-}$ production in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS experiment at the Large Hadron Collider using a dataset corresponding to an integrated luminosity of 139 fb$^{-1}$. Events with exactly one electron, one muon and no hadronic jets are studied. The fiducial region in which the measurements are performed is inspired by searches for the electroweak production of supersymmetric charginos decaying to two-lepton final states. The selected events have moderate values of missing transverse momentum and the `stransverse mass' variable $m_{\textrm{T2}}$, which is widely used in searches for supersymmetry at the LHC. The ranges of these variables are chosen so that the acceptance is enhanced for direct $W^{+}W^{-}$ production and suppressed for production via top quarks, which is treated as a background. The fiducial cross-section and particle-level differential cross-sections for six variables are measured and compared with two theoretical SM predictions from perturbative QCD calculations.
A search for a light charged Higgs boson produced in decays of the top quark, $t \to H^\pm b$ with $H^\pm \to cs$, is presented. This search targets the production of top-quark pairs $t\bar{t} \to Wb H^\pm b$, with $W \to \ell\nu$ ($\ell = e, \mu$), resulting in a lepton-plus-jets final state characterised by an isolated electron or muon and at least four jets. The search exploits $b$-quark and $c$-quark identification techniques as well as multivariate methods to suppress the dominant $t\bar{t}$ background. The data analysed correspond to 140 $\text{fb}^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV recorded with the ATLAS detector at the LHC between 2015 and 2018. Observed (expected) 95% confidence-level upper limits on the branching fraction $\mathscr{B}(t\to H^\pm b)$, assuming $\mathscr{B}(t\to Wb) + \mathscr{B}(t \to H^\pm (\to cs)b)=1.0$, are set between 0.066% (0.077%) and 3.6% (2.3%) for a charged Higgs boson with a mass between 60 GeV and 168 GeV.
The production cross section of inclusive isolated photons has been measured by the ALICE experiment at the CERN LHC in pp collisions at a centre-of-momentum energy of $\sqrt{s}=$ 7 TeV. The measurement is performed with the electromagnetic calorimeter EMCal and the central tracking detectors, covering a range of $|\eta|<0.27$ in pseudorapidity and a transverse momentum range of $ 10 < p_{\rm T}^{\gamma} < $ 60 GeV/$c$. The result extends the $p_{\rm T}$ coverage of previously published results of the ATLAS and CMS experiments at the same collision energy to smaller $p_{\rm T}$. The measurement is compared to next-to-leading order perturbative QCD calculations and to the results from the ATLAS and CMS experiments. All measurements and theory predictions are in agreement with each other.
We report results on an elastic cross section measurement in proton-proton collisions at a center-of-mass energy $\sqrt{s}=510$ GeV, obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section is measured in the four-momentum transfer squared range $0.23 \leq -t \leq 0.67$ GeV$^2$. We find that a constant slope $B$ does not fit the data in the aforementioned $t$ range, and we obtain a much better fit using a second-order polynomial for $B(t)$. The $t$ dependence of $B$ is determined using six subintervals of $t$ in the STAR measured $t$ range, and is in good agreement with the phenomenological models. The measured elastic differential cross section $\mathrm{d}\sigma/\mathrm{dt}$ agrees well with the results obtained at $\sqrt{s} = 546$ GeV for proton--antiproton collisions by the UA4 experiment. We also determine that the integrated elastic cross section within the STAR $t$-range is $\sigma^\mathrm{fid}_\mathrm{el} = 462.1 \pm 0.9 (\mathrm{stat.}) \pm 1.1 (\mathrm {syst.}) \pm 11.6 (\mathrm {scale})$~$\mu\mathrm{b}$.