The production of $\Upsilon$(2S) and $\Upsilon$(3S) mesons in lead-lead (PbPb) and proton-proton (pp) collisions is studied in their dimuon decay channel using the CMS detector at the LHC. The $\Upsilon$(3S) meson is observed for the first time in PbPb collisions, with a significance above five standard deviations. The ratios of yields measured in PbPb and pp collisions are reported for both the $\Upsilon$(2S) and $\Upsilon$(3S) mesons, as functions of transverse momentum and PbPb collision centrality. These ratios, when appropriately scaled, are significantly less than unity, indicating a suppression of $\Upsilon$ yields in PbPb collisions. This suppression increases from peripheral to central PbPb collisions. Furthermore, the suppression is stronger for $\Upsilon$(3S) mesons compared to $\Upsilon$(2S) mesons, extending the pattern of sequential suppression of quarkonium states in nuclear collisions previously seen for the $\psi$/J, $\psi$(2S), $\Upsilon$(1S), and $\Upsilon$(2S) mesons.
Measured $R_\text{AA}$ for the $\Upsilon(2S)$ state as functions of PbPb collision centrality, integrated over the full kinematic range $p_\text{T}$ < 30 GeV/c and |y| < 2.4. The global uncertainty "PP MB" represents the pp luminosity and PbPb $N_\text{MB}$ combined uncertainties, whereas the global uncertainty "PP 2S" corresponds to the uncertainty on the $\Upsilon(2S)$ pp yields.
Measured $R_\text{AA}$ for the $\Upsilon(2S)$ state as functions of PbPb collision centrality, integrated over the full kinematic range $p_\text{T}$ < 30 GeV/c and |y| < 2.4. The global uncertainty "PP MB" represents the pp luminosity and PbPb $N_\text{MB}$ combined uncertainties, whereas the global uncertainty "PP 2S" corresponds to the uncertainty on the $\Upsilon(2S)$ pp yields.
Measured $R_\text{AA}$ for the $\Upsilon(3S)$ state as functions of PbPb collision centrality, integrated over the full kinematic range $p_\text{T}$ < 30 GeV/c and |y| < 2.4. The global uncertainty "PP MB" represents the pp luminosity and PbPb $N_\text{MB}$ combined uncertainties, whereas the global uncertainty "PP 3S" corresponds to the uncertainty on the $\Upsilon(3S)$ pp yields.
The ratios of the production cross sections between the excited $\Upsilon$(2S) and $\Upsilon$(3S) mesons and the $\Upsilon$(1S) ground state, detected via their decay into two muons, are studied as a function of the number of charged particles in the event. The data are from proton-proton collisions at $\sqrt{s} =$ 7 TeV, corresponding to an integrated luminosity of 4.8 fb$^{-1}$, collected with the CMS detector at the LHC. Evidence of a decrease in these ratios as a function of the particle multiplicity is observed, more pronounced at low transverse momentum $p_\mathrm{T}^{\mu\mu}$. For $\Upsilon$(nS) mesons with $p_\mathrm{T}^{\mu\mu}$ $\gt$ 7 GeV, where most of the data were collected, the correlation with multiplicity is studied as a function of the underlying event transverse sphericity and the number of particles in a cone around the $\Upsilon$(nS) direction. The ratios are found to be multiplicity independent for jet-like events. The mean $p_\mathrm{T}^{\mu\mu}$ values for the $\Upsilon$(nS) states as a function of particle multiplicity are also measured and found to grow more steeply as their mass increases.
The measured ratios $\Upsilon(2$S$)\,/\,\Upsilon(1$S$)$ and $\Upsilon(3$S$)\,/\,\Upsilon(1$S$)$ with $p_T(\Upsilon(n$S$))>7\,GeV$ and $|y(\Upsilon(n$S$))| < 1.2$, as a function of track multiplicity $N_{track}$
The measured ratios $\Upsilon(2$S$)\,/\,\Upsilon(1$S$)$ and $\Upsilon(3$S$)\,/\,\Upsilon(1$S$)$ with $p_T(\Upsilon(n$S$))>0\,GeV$ and $|y(\Upsilon(n$S$))| < 1.93$, as a function of track multiplicity $N_{track}$.
Mean $p_T$ values of the $\Upsilon(1$S$)$, $\Upsilon(2$S$)$, and $\Upsilon(3S)$ states with $p_T\,>\,7\,GeV$ and $|y|\,<\,1.2$ as a function of track multiplicity $N_{track}$
Differential production cross sections of J/$\psi$ and $\psi$(2S) charmonium and $\Upsilon$(nS) (n = 1, 2, 3) bottomonium states are measured in proton-proton collisions at $\sqrt{s} =$ 13 TeV, with data collected by the CMS detector at the LHC, corresponding to an integrated luminosity of 2.3 fb$^{-1}$ for the J/$\psi$ and 2.7 fb$^{-1}$ for the other mesons. The five quarkonium states are reconstructed in the dimuon decay channel, for dimuon rapidity $|y| <$ 1.2. The double-differential cross sections for each state are measured as a function of $y$ and transverse momentum, and compared to theoretical expectations. In addition, ratios are presented of cross sections for prompt $\psi$(2S) to J/$\psi$, $\Upsilon$(2S) to $\Upsilon$(1S), and $\Upsilon$(3S) to $\Upsilon$(1S) production.
Double-differential cross section times the dimuon branching fraction of the J/psi meson for different ranges of pT in bins of |y| and for the full |y| < 1.2 range, for the unpolarized decay hypothesis. The global uncertainty in the integrated luminosity of 2.3% is not included in the systematic uncertainties.
Double-differential cross section times the dimuon branching fraction of the psi(2S) meson for different ranges of pT in bins of |y| and for the full |y| < 1.2 range, for the unpolarized decay hypothesis. The global uncertainty in the integrated luminosity of 2.3% is not included in the systematic uncertainties.
Double-differential cross section times the dimuon branching fraction of the Y(1S) meson for different ranges of pT in bins of |y| and for the full |y| < 1.2 range, for the unpolarized decay hypothesis. The global uncertainty in the integrated luminosity of 2.3% is not included in the systematic uncertainties.
The production yields of Upsilon(1S), Upsilon(2S), and Upsilon(3S) quarkonium states are measured through their decays into muon pairs in the CMS detector, in PbPb and pp collisions at the centre-of-mass energy per nucleon pair of 2.76 TeV. The data correspond to integrated luminosities of 166 inverse microbarns and 5.4 inverse picobarns for PbPb and pp collisions, respectively. Differential production cross sections are reported as functions of Upsilon rapidity y up to 2.4, and transverse momentum pT up to 20 GeV/c. A strong centrality-dependent suppression is observed in PbPb relative to pp collisions, by factors of up to approximately 2 and 8, for the Upsilon(1S) and Upsilon(2S) states, respectively. No significant dependence of this suppression is observed as a function of y or pT. The Upsilon(3S) state is not observed in PbPb collisions, which corresponds to a suppression for the centrality-integrated data by at least a factor of approximately 7 at a 95% confidence level. The observed suppression is in agreement with theoretical scenarios modeling the sequential melting of quarkonium states in a quark gluon plasma.
Differential cross section for Y(1S) states as a function of their transverse momentum and per unit of rapidity in pp collisions. Statistical (systematic) uncertainties are displayed as error bars (boxes). Global relative uncertainties of 3.7% are not displayed.
Differential cross section for Y(2S) states as a function of their transverse momentum and per unit of rapidity in pp collisions. Statistical (systematic) uncertainties are displayed as error bars (boxes). Global relative uncertainties of 3.7% are not displayed.
Differential cross section for Y(3S) states as a function of their transverse momentum and per unit of rapidity in pp collisions. Statistical (systematic) uncertainties are displayed as error bars (boxes). Global relative uncertainties of 3.7% are not displayed.
Using data collected with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider, we measure the energy dependence of the $e^+e^- \to h_b(nP)\pi^+\pi^-$ $(n=1,2)$ cross sections from thresholds up to $11.02\,$GeV. We find clear $\Upsilon(10860)$ and $\Upsilon(11020)$ peaks with little or no continuum contribution. We study the resonant substructure of the $\Upsilon(11020) \to h_b(nP)\pi^+\pi^-$ transitions and find evidence that they proceed entirely via the intermediate isovector states $Z_b(10610)$ and $Z_b(10650)$. The relative fraction of these states is loosely constrained by the current data: the hypothesis that only $Z_b(10610)$ is produced is excluded at the level of 3.3 standard deviations, while the hypothesis that only $Z_b(10650)$ is produced is not excluded at a significant level.
Center-of-mass energies, integrated luminosities and Born cross sections for all energy points. The first uncertainty in the energy is uncorrelated, the second is correlated. The three uncertainties in the cross sections are statistical, uncorrelated systematic and correlated systematic.
Differential cross sections as a function of transverse momentum pt are presented for the production of Y(nS) (n = 1, 2, 3) states decaying into a pair of muons. Data corresponding to an integrated luminosity of 4.9 inverse femtobarns in pp collisions at sqrt(s) = 7 TeV were collected with the CMS detector at the LHC. The analysis selects events with dimuon rapidity abs(y) < 1.2 and dimuon transverse momentum in the range 10 < pt < 100 GeV. The measurements show a transition from an exponential to a power-law behavior at pt ~ 20 GeV for the three Y states. Above that transition, the Y spectrum is significantly harder than that of the Y(1S) and Y(2S). The ratios of the Y(3S) and Y(2S) differential cross sections to the Y(1S) cross section show a rise as pt increases at low pt, then become flatter at higher pt.
The $p_{\rm T}$ bin width, the weighted mean $p_{\rm T}$ within a bin, and the differential cross section times the dimuon branching fraction for the $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) with $0 < |y| < 0.6$. The statistical and systematic uncertainties in the differential cross section are given as the percentage of the cross section.
The $p_{\rm T}$ bin width, the weighted mean $p_{\rm T}$ within a bin, and the differential cross section times the dimuon branching fraction for the $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) with $0.6 < |y| < 1.2$. The statistical and systematic uncertainties in the differential cross section are given as the percentage of the cross section.
The $p_{\rm T}$ bin width, the weighted mean $p_{\rm T}$ within a bin, and the differential cross section times the dimuon branching fraction for the $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) with $|y| < 1.2$. The statistical and systematic uncertainties in the differential cross section are given as the percentage of the cross section.
We present measurements of the inclusive production of antideuterons in $e^+e^-$ annihilation into hadrons at $\approx 10.58 \mathrm{\,Ge\kern -0.1em V}$ center-of-mass energy and in $\Upsilon(1S,2S,3S)$ decays. The results are obtained using data collected by the BABAR detector at the PEP-II electron-positron collider. Assuming a fireball spectral shape for the emitted antideuteron momentum, we find $\mathcal{B}(\Upsilon(1S) \to \bar{d}X) = (2.81 \pm 0.49 \mathrm{(stat)} {}^{+0.20}_{-0.24} \mathrm{(syst)})/! \times /! 10^{-5}$, $\mathcal{B}(\Upsilon(2S) \to \bar{d}X) = (2.64 \pm 0.11 \mathrm{(stat)} {}^{+0.26}_{-0.21} \mathrm{(syst)})/! \times /! 10^{-5}$, $\mathcal{B}(\Upsilon(3S) \to \bar{d}X) = (2.33 \pm 0.15 \mathrm{(stat)} {}^{+0.31}_{-0.28} \mathrm{(syst)})/! \times /! 10^{-5}$, and $\sigma (e^+e^- \to \bar{d}X) = (9.63 \pm 0.41 \mathrm{(stat)} {}^{+1.17}_{-1.01} \mathrm{(syst)}) \mbox{\,fb}$.
The rate of antideuteron production from the decay of UPSILON(3S).
The rate of antideuteron production from the decay of UPSILON(2S).
The rate of antideuteron production from the decay of UPSILON(1S).
We report results on studies of the e+e- annihilation into three-body Y(nS)pi+pi- (n=1,2,3) final states including measurements of cross sections and the full amplitude analysis. The cross sections measured at sqrt(s)=10.865 GeV and corrected for the initial state radiation are sigma(e+e-=>Y(1S)pi+pi-)=(2.27+-0.12+-0.14) pb, sigma(e+e-=>Y(2S)pi+pi-)=(4.07+-0.16+-0.45) pb, and sigma(e+e-=>Y(3S)pi+pi-)=(1.46+-0.09+-0.16) pb. Amplitude analysis of the three-body Y(nS)pi+pi- final states strongly favors I^G(J^P)=1^+(1^+) quantum-number assignments for the two bottomonium-like Zb+- states, recently observed in the Y(nS)pi+- and hb(mP)pi+- (m=1,2) decay channels. The results are obtained with a $121.4 1/fb data sample collected with the Belle detector at the KEKB asymmetric-energy e+e- collider.
The measured cross section and visible cross section for the three-body transition E+ E- --> UPSILON(1S) PI+ PI-.
The measured cross section and visible cross section for the three-body transition E+ E- --> UPSILON(2S) PI+ PI-.
The measured cross section and visible cross section for the three-body transition E+ E- --> UPSILON(3S) PI+ PI-.
We report measurements of Upsilon meson production in p+p, d+Au, and Au+Au collisions using the STAR detector at RHIC. We compare the Upsilon yield to the measured cross section in p+p collisions in order to quantify any modifications of the yield in cold nuclear matter using d+Au data and in hot nuclear matter using Au+Au data separated into three centrality classes. Our p+p measurement is based on three times the statistics of our previous result. We obtain a nuclear modification factor for Upsilon(1S+2S+3S) in the rapidity range |y|<1 in d+Au collisions of R_dAu = 0.79 +/- 0.24 (stat.) +/- 0.03 (sys.) +/- 0.10 (pp sys.). A comparison with models including shadowing and initial state parton energy loss indicates the presence of additional cold-nuclear matter suppression. Similarly, in the top 10% most-central Au+Au collisions, we measure a nuclear modification factor of R_AA=0.49 +/- 0.1 (stat.) +/- 0.02 (sys.) +/- 0.06 (pp sys.), which is a larger suppression factor than that seen in cold nuclear matter. Our results are consistent with complete suppression of excited-state Upsilon mesons in Au+Au collisions. The additional suppression in Au+Au is consistent with the level expected in model calculations that include the presence of a hot, deconfined Quark-Gluon Plasma. However, understanding the suppression seen in d+Au is still needed before any definitive statements about the nature of the suppression in Au+Au can be made.
Invariant mass distributions of electron pairs in the region $|y_{ee}| < 0.5$, p+p.
Invariant mass distributions of electron pairs in the region $|y_{ee}| < 0.5$, d+Au.
(a) $B_{ee} \times d\sigma/dy$ vs. $y$ for p+p collisions and for d+Au collisions (scaled down by 103).
The production of J/psi and Upsilon mesons in pp collisions at sqrt(s) = 8 TeV is studied with the LHCb detector. The J/psi and Upsilon mesons are reconstructed in the mu+mu- decay mode and the signal yields are determined with a fit to the mu+mu- invariant mass distributions. The analysis is performed in the rapidity range 2.0<y<4.5 and transverse momentum range 0<p_T<14(15) GeV/c of the J/psi(Upsilon) mesons. The J/psi and Upsilon production cross-sections and the fraction of J/psi mesons from b-hadron decays are measured as a function of the meson p_T and y.
The total integrated cross sections for prompt J/PSI production, assuming no polarisation, and J/PSI production from b-hadron decays in the rapidity range 2.0-4.5 and transverse momentum 0-14 GeV/c;.
Differential production cross section in rapidity for prompt J/PSI mesons (assuming no polarisation) and from J/PSI from b-hadron decays.;.
The double-differential cross sections for prompt J/PSI production (assuming no polarisation) and production of J/PSI from b-hadron decays as a function of transverse momentum for the rapidity range 2.0-2.5. Also shown in the final column is the fraction (in %) of J/PSIs from the latter.