We have used the momentum spectrum of leptons produced in semileptonic B-meson decays to set a 90%-confidence-level upper limit on Γ(b→ulν)Γ(b→clν) of 4%. We also measure the semileptonic branching fractions of the B meson to be (12.0±0.7±0.5)% for electrons and (10.8±0.6±1.0)% for muons.
No description provided.
No description provided.
We report the final results of a search for narrow structures in the p¯p total cross section between 395 and 740 MeV/c with a rms mass resolution of 1.5 MeV around the S-resonance region. A reanalysis of the data significantly improved the statistical accuracy. No evidence is found for narrow structures and a 90%-confidence-level upper limit of 24 mb MeV is set at around 500 MeV/c for the integrated cross section of a Breit-Wigner-type resonance of width ≲4 MeV.
No description provided.
The production of thef0 in two photon collisions, with the subsequent decayf0→π+π− has been observed in the CELLO detector at PETRA. Thef0 peak was found to lie on a dipion continuum and to be shifted downwards in mass by ≃50 MeV/c2. The ππ mass spectrum from 0.8 to 1.5 GeV/c2 was well fitted by the model of Mennessier using only a unitarised Born amplitude and helicity 2f0 amplitude. The previously observed mass shift and distortion of thef0 peak are explained by strong interference between the Born andf0 amplitudes. The only free parameter in the fit of the data to the model is the radiative widthΓγγ(f0). It was found that:Γγγ(f0)=2.5±0.1±0.5 keV where the first (second) quoted errors are statistical (systematic).
Data read from graph.
Data read from graph.
The differential cross sections of the reaction p―p→n―n were measured at 390, 490, 590, 690, and 780 MeV/c. The existence of the theoretically predicted forward dip is confirmed. The results are compared with the predictions of various N―N potential models.
NUMERICAL VALUES SUPPLIED BY F. SAI.
NUMERICAL VALUES SUPPLIED BY F. SAI.
NUMERICAL VALUES SUPPLIED BY F. SAI.
We have studied the reactions\(\bar pn \to \pi ^ -\pi ^ -\pi ^ +(\pi ^0 )\) at incident momenta between 0.42 and 1.65 GeV/c using two exposures in deuterium-filled bubble chambers. The ratio of the rates for 3π to 4π final states shows a sharp increase at a momentum of about 0.8 GeV/c. A full partial-wave analysis of the 3π final state has been made and complex structure is observed at approximately the same momentum, associated in particular with theJP=3+ final state.
No description provided.
No description provided.
We have studied several features of the production of charged-hardon pairs by γγ collisions. We have measured the f0 partial width Γf0→γγ(Q2) for Q2 in the range 0
Data read from graph.. Both statistical and systematic errors included.
The total and differential p¯p charge-exchange cross sections were obtained at seven momenta in the range 480 to 728 MeV/c. The total cross sections are roughly consistent with other data. The momentum dependences of the Legendre coefficients a1a0, a2a0, and a3a0 of the differential cross sections do not agree well with the predictions of the Bryan-Phillips model, unlike the case of elastic scattering.
TWO SETS OF DATA ARE GIVEN. THIS FIRST IS THAT PREFERRED USING THE CROSS SECTIONS OF BIZZARI ET AL.
SECOND SET USING BURROWS ET AL., CROSS SECTIONS.
DATA NORMALIZED TO THE CROSS SECTIONS OF HAMILTON ET AL., PRL 44, 1179 (1980).
The differential cross section of the reactionγ+p→π+ was measured at pion CM-angles of 20° and 30° for photon energies between 500 MeV and 1,400 MeV. The pions were detected in a magnetic spectrometer. By measuring each pion trajectory and by offline calculation of the initial pion parameters an energy resolution of about 2.5% FWHM was achieved. The results complete a set of data which were measured in recent years at the Bonn 2.5 GeV synchrotron. In comparison to photoproduction analyses two effects were revealed: The η cusp appears in the energy dependence of the cross section as a sharp drop atKγ=710 MeV. In the region of the third resonance the data show a greater enhancement than predicted by most of the analyses.
No description provided.
We have observed exclusive production of K + K − and K S O K S O pairs and the excitation of the f′(1515) tensor meson in photon-photon collisions. Assuming the f′ to be production in a helicity 2 state, we determine Λ( f ′ → γγ) B( f ′ → K K ) = 0.11 ± 0.02 ± 0.04 keV . The non-strange quark of the f′ is found to be less than 3% (95% CL). For the θ(1640) we derive an upper limit for the product Λ(θ rarr; γγ K K ) < 0.03 keV (95% CL ) .
Data read from graph.. Errors are the square roots of the number of events.
Data read from graph.. Errors are the square roots of the number of events.
The polarization for the\(\bar pp\) elastic scattering was measured as a function of the centre-of-mass angle of scattering between 17° and 90° at the average incident momentum of 0.7 GeV/c by using doublescattering events in a bubble chamber. The average value of the polarization was found to be 0.23 ± 0.05. The angular dependence of the polarization obtained in this experiment was interpreted by the strong absorptive potential model for\(\bar {\mathcal{N}}{\mathcal{N}}\) interactions recently proposed.
SIGN OF POLARIZATION TAKEN AS POSITIVE ACCORDING TO THE DATA OF ALBROW ET AL., NP B37, 349 (1972).