Date

Precision measurement of the $B^{0}$ meson lifetime using $B^{0} \rightarrow J/\psi K^{*0}$ decays with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2024-279, 2024.
Inspire Record 2849026 DOI 10.17182/hepdata.158278

A measurement of the $B^{0}$ meson lifetime and related properties using $B^0 \to J/\psi K^{*0}$ decays in data from 13 TeV proton-proton collisions with an integrated luminosity of 140 fb$^{-1}$ recorded by the ATLAS detector at the LHC is presented. The measured effective lifetime is $$ \tau = 1.5053 \pm 0.0012 ~\mathrm{(stat.)} \pm 0.0035 ~\mathrm{(syst.)~ps}. $$ The average decay width extracted from the effective lifetime, using parameters from external sources, is $$ \Gamma_d = 0.6639 \pm 0.0005 ~\mathrm{(stat.)} \pm 0.0016 ~\mathrm{(syst.)}\pm 0.0038 ~\textrm{(ext.)} \textrm{ ps}^{-1}, $$ where the uncertainties are statistical, systematic and from external sources. The earlier ATLAS measurement of $\Gamma_s$ in the $B^0_s \to J/\psi\phi$ decay was used to derive a value for the ratio of the average decay widths $\Gamma_d$ and $\Gamma_s$ for $B^{0}$ and $B_s^{0}$ mesons respectively, of $$ \frac{\Gamma_d }{\Gamma_s } = 0.9905 \pm 0.0022 ~\textrm{(stat.)} \pm 0.0036 ~\textrm{(syst.)} \pm 0.0057 ~\textrm{(ext.)}. $$ The measured lifetime, average decay width and decay width ratio are in agreement with theoretical predictions and with measurements by other experiments. This measurement provides the most precise result of the effective lifetime of the $B^{0}$ meson to date.

3 data tables

The measured effective lifetime for the $B^0 \rightarrow J/\psi\,K^{*0}$ decay.

The measured average decay width $\Gamma_{d}\,$ extracted from the average lifetime.

The measured ratio $\Gamma_{d} / \Gamma_{s}\,$ of the average decay widths.


Measurement of $\omega$ meson production in pp collisions at $\sqrt{s}$ = 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Agarwal, Apar ; et al.
JHEP 04 (2025) 067, 2025.
Inspire Record 2848263 DOI 10.17182/hepdata.157865

The $p_{\rm T}$-differential cross section of $\omega$ meson production in pp collisions at $\sqrt{s}$ = 13 TeV at midrapidity ($|y|<0.5$) was measured with the ALICE detector at the LHC, covering an unprecedented transverse-momentum range of $1.6 < p_{\rm T} <50$ GeV/$c$. The meson is reconstructed via the $\omega\rightarrow\pi^+\pi^-\pi^0$ decay channel. The results are compared with various theoretical calculations: PYTHIA8.2 with the Monash 2013 tune overestimates the data by up to 50%, whereas good agreement is observed with Next-to-Leading Order (NLO) calculations incorporating $\omega$ fragmentation using a broken SU(3) model. The $\omega/\pi^0$ ratio is presented and compared with theoretical calculations and the available measurements at lower collision energies. The presented data triples the $p_{\rm T}$ ranges of previously available measurements. A constant ratio of $C^{\omega/\pi^0}=0.578\pm0.006~\text{(stat.)}\pm 0.013~\text{(syst.)}$ is found above a transverse momentum of 4 GeV/$c$, which is in agreement with previous findings at lower collision energies within the systematic and statistical uncertainties.

2 data tables

Invariant differential cross section of OMEGA mesons produced in inelastic pp collisions at center-of-mass energy 13 TeV, the uncertainty of sigma_{MB} of 1.58% is not included in the systematic error.

The measured ratio of cross sections for inclusive OMEGA to PI0 production at a centre-of-mass energy of 13 TeV.


Search for a heavy charged Higgs boson decaying into a $W$ boson and a Higgs boson in final states with leptons and $b$-jets in $\sqrt{s} = 13$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 02 (2025) 143, 2025.
Inspire Record 2846106 DOI 10.17182/hepdata.156777

This article presents a search for a heavy charged Higgs boson produced in association with a top quark and a bottom quark, and decaying into a $W$ boson and a $125$ GeV Higgs boson $h$. The search is performed in final states with one charged lepton, missing transverse momentum, and jets using proton-proton collision data at $\sqrt{s} = 13$ TeV recorded with the ATLAS detector during Run 2 of the LHC at CERN. This data set corresponds to a total integrated luminosity of 140 fb$^{-1}$. The search is conducted by examining the reconstructed invariant mass distribution of the $Wh$ candidates for evidence of a localised excess in the charged Higgs boson mass range from $250$ GeV to $3$ TeV. No significant excess is observed and 95% confidence-level upper limits between $2.8$ pb and $1.2$ fb are placed on the production cross-section times branching ratio for charged Higgs bosons decaying into $Wh$.

31 data tables

Upper limit at the 95% CL on the product of the cross-section for the $pp \rightarrow tb H^{\pm}$ process and the branching ratio $B(W^{\pm} \times B (h \rightarrow b \bar{b} ))$ from the combined fit to all signal and control regions of the resolved analysis.

Upper limit at the 95% CL on the product of the cross-section for the $pp \rightarrow tb H^{\pm}$ process and the branching ratio $B(W^{\pm} \times B (h \rightarrow b \bar{b} ))$ from the combined fit to all signal and control regions of the merged analysis.

Product of acceptance and efficiency for pp->tbH(->Wh) as function of the charged Higgs boson mass for the resolved qqbb low-purity signal region.

More…

Search for supersymmetry in final states with missing transverse momentum and charm-tagged jets using 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=$ 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 02 (2025) 193, 2025.
Inspire Record 2842361 DOI 10.17182/hepdata.155678

The paper presents a search for supersymmetric particles produced in proton-proton collisions at $\sqrt{s}=$ 13 TeV and decaying into final states with missing transverse momentum and jets originating from charm quarks. The data were taken with the ATLAS detector at the Large Hadron Collider at CERN from 2015 to 2018 and correspond to an integrated luminosity of 139 fb$^{-1}$. No significant excess of events over the expected Standard Model background expectation is observed in optimized signal regions, and limits are set on the production cross-sections of the supersymmetric particles. Pair production of charm squarks or top squarks, each decaying into a charm quark and the lightest supersymmetric particle $\tilde{\chi}^0_1$, is excluded at 95% confidence level for squarks with masses up to 900 GeV for scenarios where the mass of $\tilde{\chi}^0_1$ is below 50 GeV. Additionally, the production of leptoquarks with masses up to 900 GeV is excluded for the scenario where up-type leptoquarks decay into a charm quark and a neutrino. Model-independent limits on cross-sections and event yields for processes beyond the Standard Model are also reported.

160 data tables

Summary of material in this HEPData record. <br/><br/> Truth Code snippets, SLHA files, Madgraph process cards and UFO files for the leptoquark models are available under "Additional Resources" (purple button on the left). <br/><br/> <b>Contours:</b> <ul> SUSY exclusion limits (best-expected SR combination) <ul> <a href="155678?version=1&table=Contour1">Expected</a> <a href="155678?version=1&table=Contour3">+1$\sigma$</a> <a href="155678?version=1&table=Contour2">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour4">Observed</a> <a href="155678?version=1&table=Contour5">+1$\sigma$</a> <a href="155678?version=1&table=Contour6">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (best-expected SR combination) as a function of $\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ <ul> <a href="155678?version=1&table=Contour7">Expected</a> <a href="155678?version=1&table=Contour9">+1$\sigma$</a> <a href="155678?version=1&table=Contour8">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour10">Observed</a> <a href="155678?version=1&table=Contour11">+1$\sigma$</a> <a href="155678?version=1&table=Contour12">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-HM1) <ul> <a href="155678?version=1&table=Contour15">Expected</a> <a href="155678?version=1&table=Contour14">+1$\sigma$</a> <a href="155678?version=1&table=Contour13">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour18">Observed</a> <a href="155678?version=1&table=Contour16">+1$\sigma$</a> <a href="155678?version=1&table=Contour17">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-HM2) <ul> <a href="155678?version=1&table=Contour21">Expected</a> <a href="155678?version=1&table=Contour20">+1$\sigma$</a> <a href="155678?version=1&table=Contour19">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour24">Observed</a> <a href="155678?version=1&table=Contour22">+1$\sigma$</a> <a href="155678?version=1&table=Contour23">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-HM3) <ul> <a href="155678?version=1&table=Contour27">Expected</a> <a href="155678?version=1&table=Contour26">+1$\sigma$</a> <a href="155678?version=1&table=Contour25">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour30">Observed</a> <a href="155678?version=1&table=Contour28">+1$\sigma$</a> <a href="155678?version=1&table=Contour29">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-Comp1) <ul> <a href="155678?version=1&table=Contour33">Expected</a> <a href="155678?version=1&table=Contour32">+1$\sigma$</a> <a href="155678?version=1&table=Contour31">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour36">Observed</a> <a href="155678?version=1&table=Contour34">+1$\sigma$</a> <a href="155678?version=1&table=Contour35">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-Comp2) <ul> <a href="155678?version=1&table=Contour39">Expected</a> <a href="155678?version=1&table=Contour38">+1$\sigma$</a> <a href="155678?version=1&table=Contour37">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour42">Observed</a> <a href="155678?version=1&table=Contour40">+1$\sigma$</a> <a href="155678?version=1&table=Contour41">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-Comp3) <ul> <a href="155678?version=1&table=Contour45">Expected</a> <a href="155678?version=1&table=Contour44">+1$\sigma$</a> <a href="155678?version=1&table=Contour43">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour48">Observed</a> <a href="155678?version=1&table=Contour46">+1$\sigma$</a> <a href="155678?version=1&table=Contour47">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-Comp-1c) <ul> <a href="155678?version=1&table=Contour50">Expected</a> <a href="155678?version=1&table=Contour49">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (scan over branching fraction for $m(\tilde{\chi}_1^0)=1$ GeV) <ul> <a href="155678?version=1&table=Contour51">Expected</a> <a href="155678?version=1&table=Contour53">+1$\sigma$</a> <a href="155678?version=1&table=Contour52">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour54">Observed</a> <a href="155678?version=1&table=Contour55">+1$\sigma$</a> <a href="155678?version=1&table=Contour56">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (scan over branching fraction for $m(\tilde{\chi}_1^0)=200$ GeV) <ul> <a href="155678?version=1&table=Contour57">Expected</a> <a href="155678?version=1&table=Contour59">+1$\sigma$</a> <a href="155678?version=1&table=Contour58">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour60">Observed</a> <a href="155678?version=1&table=Contour61">+1$\sigma$</a> <a href="155678?version=1&table=Contour62">-1$\sigma$</a> <br/> </ul> $\mathrm{LQ}^\mathrm{u}_{21}$ exclusion limits <ul> <a href="155678?version=1&table=Contour65">Expected</a> <a href="155678?version=1&table=Contour64">+1$\sigma$</a> <a href="155678?version=1&table=Contour63">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour68">Observed</a> <a href="155678?version=1&table=Contour66">+1$\sigma$</a> <a href="155678?version=1&table=Contour67">-1$\sigma$</a> <br/> </ul> $\mathrm{LQ}^\mathrm{u}_{22}$ exclusion limits <ul> <a href="155678?version=1&table=Contour71">Expected</a> <a href="155678?version=1&table=Contour70">+1$\sigma$</a> <a href="155678?version=1&table=Contour69">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour74">Observed</a> <a href="155678?version=1&table=Contour72">+1$\sigma$</a> <a href="155678?version=1&table=Contour73">-1$\sigma$</a> <br/> </ul> </ul> <b>Cross-section upper limits:</b> <ul> SUSY signals (best-expected SR combination): <a href="155678?version=1&table=Cross-sectionupperlimit1">Observed</a> <br/> $\mathrm{LQ}^\mathrm{u}_{21}$ (combined High-Mass SRs): <a href="155678?version=1&table=Cross-sectionupperlimit2">Observed</a> <br/> $\mathrm{LQ}^\mathrm{u}_{22}$ (combined High-Mass SRs): <a href="155678?version=1&table=Cross-sectionupperlimit3">Observed</a> <br/> $U(1)$ pair (min) (combined High-Mass SRs): <a href="155678?version=1&table=Cross-sectionupperlimit6">Expected</a> <a href="155678?version=1&table=Cross-sectionupperlimit5">+1$\sigma$</a> <a href="155678?version=1&table=Cross-sectionupperlimit4">-1$\sigma$</a> <a href="155678?version=1&table=Cross-sectionupperlimit7">Observed</a> <br/> $U(1)$ pair (YM) (combined High-Mass SRs): <a href="155678?version=1&table=Cross-sectionupperlimit10">Expected</a> <a href="155678?version=1&table=Cross-sectionupperlimit9">+1$\sigma$</a> <a href="155678?version=1&table=Cross-sectionupperlimit8">-1$\sigma$</a> <a href="155678?version=1&table=Cross-sectionupperlimit11">Observed</a> <br/> </ul> <b>Signal region distributions:</b> <ul> <a href="155678?version=1&table=SRdistribution2">$E_\mathrm{T}^\mathrm{miss}$ Sig. in SR-HM1</a> <br/> <a href="155678?version=1&table=SRdistribution3">$m_\mathrm{T}^\mathrm{min}(c)$ in SR-HM2</a> <br/> <a href="155678?version=1&table=SRdistribution4">$R_\mathrm{ISR}$ in SR-Comp1</a> <br/> <a href="155678?version=1&table=SRdistribution5">$R_\mathrm{ISR}$ in SR-Comp2</a> <br/> <a href="155678?version=1&table=SRdistribution6">$R_\mathrm{ISR}$ in SR-Comp3</a> <br/> <a href="155678?version=1&table=SRdistribution1">$R_\mathrm{ISR}$ in SR-Comp-1c</a> <br/> </ul> <b>Acceptances:</b> <ul> SUSY signals: <a href="155678?version=1&table=Acceptance2">SR-HM1</a> <a href="155678?version=1&table=Acceptance3">SR-HM2</a> <a href="155678?version=1&table=Acceptance4">SR-HM3</a> <a href="155678?version=1&table=Acceptance5">SR-HM-Disc</a> <a href="155678?version=1&table=Acceptance6">SR-Comp1</a> <a href="155678?version=1&table=Acceptance7">SR-Comp2</a> <a href="155678?version=1&table=Acceptance8">SR-Comp3</a> <a href="155678?version=1&table=Acceptance1">SR-Comp-1c</a> <br/> $\mathrm{LQ}^\mathrm{u}_{21}$: <a href="155678?version=1&table=Acceptance9">SR-HM1</a> <a href="155678?version=1&table=Acceptance10">SR-HM2</a> <a href="155678?version=1&table=Acceptance11">SR-HM3</a> <a href="155678?version=1&table=Acceptance12">SR-HM-Disc</a> <br/> $\mathrm{LQ}^\mathrm{u}_{22}$: <a href="155678?version=1&table=Acceptance13">SR-HM1</a> <a href="155678?version=1&table=Acceptance14">SR-HM2</a> <a href="155678?version=1&table=Acceptance15">SR-HM3</a> <a href="155678?version=1&table=Acceptance16">SR-HM-Disc</a> <br/> $U(1)$ pair (min): <a href="155678?version=1&table=Acceptance17">SR-HM1</a> <a href="155678?version=1&table=Acceptance18">SR-HM2</a> <a href="155678?version=1&table=Acceptance19">SR-HM3</a> <a href="155678?version=1&table=Acceptance20">SR-HM-Disc</a> <br/> $U(1)$ pair (YM): <a href="155678?version=1&table=Acceptance21">SR-HM1</a> <a href="155678?version=1&table=Acceptance22">SR-HM2</a> <a href="155678?version=1&table=Acceptance23">SR-HM3</a> <a href="155678?version=1&table=Acceptance24">SR-HM-Disc</a> <br/> </ul> <b>Efficiencies:</b> <ul> $U(1)$ pair (min): <a href="155678?version=1&table=Efficiency1">SR-HM1</a> <a href="155678?version=1&table=Efficiency2">SR-HM2</a> <a href="155678?version=1&table=Efficiency3">SR-HM3</a> <a href="155678?version=1&table=Efficiency4">SR-HM-Disc</a> <br/> $U(1)$ pair (YM): <a href="155678?version=1&table=Efficiency5">SR-HM1</a> <a href="155678?version=1&table=Efficiency6">SR-HM2</a> <a href="155678?version=1&table=Efficiency7">SR-HM3</a> <a href="155678?version=1&table=Efficiency8">SR-HM-Disc</a> <br/> </ul> <b>Acceptance times efficiency:</b> <ul> SUSY signals: <a href="155678?version=1&table=Acceptancetimesefficiency2">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency3">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency4">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency5">SR-HM-Disc</a> <a href="155678?version=1&table=Acceptancetimesefficiency6">SR-Comp1</a> <a href="155678?version=1&table=Acceptancetimesefficiency7">SR-Comp2</a> <a href="155678?version=1&table=Acceptancetimesefficiency8">SR-Comp3</a> <a href="155678?version=1&table=Acceptancetimesefficiency1">SR-Comp-1c</a> <br/> $\mathrm{LQ}^\mathrm{u}_{21}$: <a href="155678?version=1&table=Acceptancetimesefficiency9">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency10">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency11">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency12">SR-HM-Disc</a> <br/> $\mathrm{LQ}^\mathrm{u}_{22}$: <a href="155678?version=1&table=Acceptancetimesefficiency13">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency14">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency15">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency16">SR-HM-Disc</a> <br/> $U(1)$ pair (min): <a href="155678?version=1&table=Acceptancetimesefficiency17">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency18">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency19">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency20">SR-HM-Disc</a> <br/> $U(1)$ pair (YM): <a href="155678?version=1&table=Acceptancetimesefficiency21">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency22">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency23">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency24">SR-HM-Disc</a> <br/> </ul> <b>Cutflow:</b> <ul> SUSY benchmarks: <a href="155678?version=1&table=Cutflow5">SR-HM1</a> <a href="155678?version=1&table=Cutflow6">SR-HM2</a> <a href="155678?version=1&table=Cutflow7">SR-HM3</a> <a href="155678?version=1&table=Cutflow8">SR-HM-Disc</a> <a href="155678?version=1&table=Cutflow2">SR-Comp1</a> <a href="155678?version=1&table=Cutflow3">SR-Comp2</a> <a href="155678?version=1&table=Cutflow4">SR-Comp3</a> <a href="155678?version=1&table=Cutflow1">SR-Comp-1c</a> <br/> LQ benchmarks: <a href="155678?version=1&table=Cutflow9">SR-HM1</a> <a href="155678?version=1&table=Cutflow10">SR-HM2</a> <a href="155678?version=1&table=Cutflow11">SR-HM3</a> <a href="155678?version=1&table=Cutflow12">SR-HM-Disc</a> <br/> </ul>

Expected exclusion limit at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos.

Expected exclusion limit $(-1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos.

More…

Search for a new scalar decaying into new spin-1 bosons in four-lepton final states with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Lett.B 865 (2025) 139472, 2025.
Inspire Record 2842018 DOI 10.17182/hepdata.145171

A search is conducted for a new scalar boson $S$, with a mass distinct from that of the Higgs boson, decaying into four leptons ($\ell =$$e$, $\mu$) via an intermediate state containing two on-shell, promptly decaying new spin-1 bosons $Z_\text{d}$: $S \rightarrow Z_\text{d}Z_\text{d} \rightarrow 4\ell$, where the $Z_\text{d}$ boson has a mass between 15 and 300 GeV, and the $S$ boson has a mass between either 30 and 115 GeV or 130 and 800 GeV. The search uses proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider with an integrated luminosity of 139 fb$^{-1}$ at a centre-of-mass energy of $\sqrt{s}=13$ TeV. No significant excess above the Standard Model background expectation is observed. Upper limits at 95% confidence level are set on the production cross-section times branching ratio, $\sigma(gg \to S) \times \mathcal{B}(S\rightarrow Z_\text{d}Z_\text{d} \rightarrow 4\ell)$, as a function of the mass of both particles, $m_S$ and $m_{Z\text{d}}$.

32 data tables

Average dilepton mass distribution $\left\langle m_{\ell\ell}\right\rangle = \frac{1}{2}\left(m_{ab} + m_{cd}\right)$ in Signal Region 1.

Average dilepton mass distribution $\left\langle m_{\ell\ell}\right\rangle = \frac{1}{2}\left(m_{ab} + m_{cd}\right)$ in Signal Region 2.

Total invariant mass distribution $m_{4\ell}$ in Signal Region 1.

More…

Version 2
Dark Matter Search Results from 4.2 Tonne-Years of Exposure of the LUX-ZEPLIN (LZ) Experiment

The LZ collaboration Aalbers, J. ; Akerib, D.S. ; Al Musalhi, A.K. ; et al.
FERMILAB-PUB-24-0796-V, 2024.
Inspire Record 2841863 DOI 10.17182/hepdata.155182

We report results of a search for nuclear recoils induced by weakly interacting massive particle (WIMP) dark matter using the LUX-ZEPLIN (LZ) two-phase xenon time projection chamber. This analysis uses a total exposure of $4.2\pm0.1$ tonne-years from 280 live days of LZ operation, of which $3.3\pm0.1$ tonne-years and 220 live days are new. A technique to actively tag background electronic recoils from $^{214}$Pb $\beta$ decays is featured for the first time. Enhanced electron-ion recombination is observed in two-neutrino double electron capture decays of $^{124}$Xe, representing a noteworthy new background. After removal of artificial signal-like events injected into the data set to mitigate analyzer bias, we find no evidence for an excess over expected backgrounds. World-leading constraints are placed on spin-independent (SI) and spin-dependent WIMP-nucleon cross sections for masses $\geq$9 GeV/$c^2$. The strongest SI exclusion set is $2.1\times10^{-48}$ cm$^{2}$ at the 90% confidence level at a mass of 36 GeV/$c^2$, and the best SI median sensitivity achieved is $5.0\times10^{-48}$ cm$^{2}$ for a mass of 40 GeV/$c^2$.

5 data tables

90% CL WIMP SI cross sections, including sensitivities

90% CL WIMP SDn cross sections, including sensitivities and nuclear structure uncertainties

90% CL WIMP SDp cross sections, including sensitivities and nuclear structure uncertainties

More…

Version 2
Search for a light CP-odd Higgs boson decaying into a pair of $\tau$-leptons in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 12 (2024) 126, 2024.
Inspire Record 2836178 DOI 10.17182/hepdata.153948

This paper reports a search for a light CP-odd scalar resonance with a mass of 20 GeV to 90 GeV in 13 TeV proton-proton collision data with an integrated luminosity of 140 fb$^{-1}$ collected with the ATLAS detector at the Large Hadron Collider. The analysis assumes the resonance is produced via gluon-gluon fusion and decays into a $\tau^{+}\tau^{-}$ pair which subsequently decays into a fully leptonic $\mu^{+}\nu_{\mu} \bar{\nu}_{\tau} e^{-} \bar{\nu}_{e} \nu_{\tau}$ or $e^{+}\nu_{e}\bar{\nu}_{\tau} \mu^-\bar{\nu}_{\mu}\nu_{\tau}$ final state. No significant excess of events above the predicted Standard Model background is observed. The results are interpreted within a flavour-aligned two-Higgs-doublet model, and a model-independent cross-section interpretation is also given. Upper limits at 95$%$ confidence level between 3.0 pb and 68 pb are set on the cross-section for producing a CP-odd Higgs boson that decays into a $\tau^+\tau^-$ pair.

5 data tables

Post-fit $m_\mathrm{MMC}$ distribution in the low-mass SR for the $m_A = 20\,\mathrm{GeV}$ signal mass hypothesis. $m_\mathrm{MMC}$ is the mass reconstructed by the Missing Mass Calculator. Processes contributing to the background Others are $Z/\gamma^* \rightarrow ee/\mu\mu$ and SM Higgs. The subscript on the $A\to\tau\tau$ process indicates the mass of the $A$ boson. Total includes all backgrounds and the signal process. The low-mass Signal Region is defined as: - 1 electron and 1 muon with opposite charge - $p_\mathrm{T}$ requirements of the leptons are a combination of the following: - $p_\mathrm{T}^e > 18\,\mathrm{GeV}$ and $p_\mathrm{T}^\mu > 15\,\mathrm{GeV}$ - $p_\mathrm{T}^e > 10\,\mathrm{GeV}$ and $p_\mathrm{T}^\mu > 25\,\mathrm{GeV}$ - $p_\mathrm{T}^e > 27\,\mathrm{GeV}$ and $p_\mathrm{T}^\mu > 10\,\mathrm{GeV}$ - $\vert \eta_e \vert < 2.47$, excluding $1.37 < \vert \eta_e \vert < 1.52$ - $\vert \eta_\mu \vert < 2.7$ - no jets with $b$-quarks - $\Delta R_{\ell\ell} < 0.7$ - $E_\mathrm{T}^\mathrm{miss} > 50\,\mathrm{GeV}$ - $m_\mathrm{T}^\mathrm{tot} = \sqrt{\left(p_\mathrm{T}^e+p_\mathrm{T}^\mu+E_\mathrm{T}^\mathrm{miss}\right)^2-\left(\vec{p}_\mathrm{T}^{\,e}+\vec{p}_\mathrm{T}^{\,\mu}+\vec{E}_\mathrm{T}^{\,\mathrm{miss}}\right)^2} < 45\,\mathrm{GeV}$ - $m_\mathrm{MMC} > 0\,\mathrm{GeV}$

Post-fit $m_\mathrm{MMC}$ distribution in the high-mass SR for the $m_A = 90\,\mathrm{GeV}$ signal mass hypothesis. $m_\mathrm{MMC}$ is the mass reconstructed by the Missing Mass Calculator. Processes contributing to the background Others are $Z/\gamma^* \rightarrow ee/\mu\mu$ and SM Higgs. The subscript on the $A\to\tau\tau$ process indicates the mass of the $A$ boson. otal includes all backgrounds and the signal process. The high-mass Signal Region is defined as: - 1 electron and 1 muon with opposite charge - $p_\mathrm{T}$ requirements of the leptons are a combination of the following: - $p_\mathrm{T}^e > 18\,\mathrm{GeV}$ and $p_\mathrm{T}^\mu > 15\,\mathrm{GeV}$ or - $p_\mathrm{T}^e > 10\,\mathrm{GeV}$ and $p_\mathrm{T}^\mu > 25\,\mathrm{GeV}$ or - $p_\mathrm{T}^e > 27\,\mathrm{GeV}$ and $p_\mathrm{T}^\mu > 10\,\mathrm{GeV}$ - $\vert \eta_e \vert < 2.47$, excluding $1.37 < \vert \eta_e \vert < 1.52$ - $\vert \eta_\mu \vert < 2.7$ - no jets with $b$-quarks - $\Delta R_{\ell\ell} < 1.0$ - $E_\mathrm{T}^\mathrm{miss} > 30\,\mathrm{GeV}$ - $m_\mathrm{T}^\mathrm{tot} = \sqrt{\left(p_\mathrm{T}^e+p_\mathrm{T}^\mu+E_\mathrm{T}^\mathrm{miss}\right)^2-\left(\vec{p}_\mathrm{T}^{\,e}+\vec{p}_\mathrm{T}^{\,\mu}+\vec{E}_\mathrm{T}^{\,\mathrm{miss}}\right)^2} < 65\,\mathrm{GeV}$ - $35\,\mathrm{GeV} < m_\mathrm{MMC} < 130\,\mathrm{GeV}$

Expected and observed $95\%$ CL limits on the production cross-section for $gg\rightarrow A$ times the branching ratio for $A$ decaying into two $\tau$-leptons for $A$ boson masses ranging from $20$ to $90\,\mathrm{GeV}$.

More…

Search for supersymmetry using vector boson fusion signatures and missing transverse momentum in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 12 (2024) 116, 2024.
Inspire Record 2835159 DOI 10.17182/hepdata.156776

This paper presents a search for supersymmetric particles in models with highly compressed mass spectra, in events consistent with being produced through vector boson fusion. The search uses 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV collected by the ATLAS experiment at the Large Hadron Collider. Events containing at least two jets with a large gap in pseudorapidity, large missing transverse momentum, and no reconstructed leptons are selected. A boosted decision tree is used to separate events consistent with the production of supersymmetric particles from those due to Standard Model backgrounds. The data are found to be consistent with Standard Model predictions. The results are interpreted using simplified models of $R$-parity-conserving supersymmetry in which the lightest supersymmetric partner is a bino-like neutralino with a mass similar to that of the lightest chargino and second-to-lightest neutralino, both of which are wino-like. Lower limits at 95% confidence level on the masses of next-to-lightest supersymmetric partners in this simplified model are established between 117 and 120 GeV when the lightest supersymmetric partners are within 1 GeV in mass.

12 data tables

Observed and predicted background distributions of the BDT score in $\text{SR}_\text{2j}$ after the exclusion fit. The nominal, pre-fit prediction of an example benchmark signal with $(m(\widetilde{\chi}_{2}^{0}/\widetilde{\chi}_{1}^{\pm}), \widetilde{\chi}_{1}^{0}) = (100, 99)$ GeV is shown in red. The 'Other' category contains rare backgrounds from diboson, triboson and top-quark production processes. The hatched band represents the post-fit experimental, theoretical, and statistical uncertainties in the total background. The bottom panel of each plot shows the ratio between the data and the post-fit background prediction.

Observed and predicted background distributions of the BDT score in $\text{SR}_{\geq3\text{j}}$ after the exclusion fit. The nominal, pre-fit prediction of an example benchmark signal with $(m(\widetilde{\chi}_{2}^{0}/\widetilde{\chi}_{1}^{\pm}), \widetilde{\chi}_{1}^{0}) = (100, 99)$ GeV is shown in red. The 'Other' category contains rare backgrounds from diboson, triboson and top-quark production processes. The hatched band represents the post-fit experimental, theoretical, and statistical uncertainties in the total background. The bottom panel of each plot shows the ratio between the data and the post-fit background prediction.

Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the compressed SUSY simplified model with a bino-like LSP and wino-like NLSPs being considered. These are shown with $\pm1\sigma_\text{exp}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm1\sigma^{\text{SUSY}}_{\text{theory}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the ATLAS searches using the soft lepton signature is illustrated by the blue region while the limit imposed by the LEP experiments is shown in grey.

More…

Search for same-charge top-quark pair production in $pp$ collisions at $\sqrt{s}=$ 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 02 (2025) 084, 2025.
Inspire Record 2832100 DOI 10.17182/hepdata.155341

A search for the production of top-quark pairs with the same electric charge ($tt$ or $\bar{t}\bar{t}$) is presented. The analysis uses proton-proton collision data at $\sqrt{s}=13$ TeV, recorded by the ATLAS detector at the Large Hadron Collider, corresponding to an integrated luminosity of 140 fb$^{-1}$. Events with two same-charge leptons and at least two $b$-tagged jets are selected. Neural networks are employed to define two selections sensitive to additional couplings beyond the Standard Model that would enhance the production rate of same-sign top-quark pairs. No significant signal is observed, leading to an upper limit on the total production cross-section of same-sign top-quark pairs of 1.6 fb at 95$\%$ confidence level. Corresponding limits on the three Wilson coefficients associated with the ${\cal O}_{tu}^{(1)}$, ${\cal O}_{Qu}^{(1)}$, and ${\cal O}_{Qu}^{(8)}$ operators in the Standard Model Effective Field Theory framework are derived.

15 data tables

Distributions of the $\mathrm{NN^{SvsB}}$ output for data and the expected background after the likelihood fit in the $SR_{ctu ++}$ signal region. The post-fit background expectations are shown as filled histograms, the combined pre-fit background expectations are shown as dashed lines. The signal distribution using the Wilson coefficient values $c_{tu}^{(1)}=0.04$, $c_{Qu}^{(1)}=0.1$, $c_{Qu}^{(8)}=0.1$ is shown with a dotted line, normalized to the same number of events as the background.

Distributions of the $\mathrm{NN^{SvsB}}$ output for data and the expected background after the likelihood fit in the $SR_{ctu --}$ signal region. The post-fit background expectations are shown as filled histograms, the combined pre-fit background expectations are shown as dashed lines. The signal distribution using the Wilson coefficient values $c_{tu}^{(1)}=0.04$, $c_{Qu}^{(1)}=0.1$, $c_{Qu}^{(8)}=0.1$ is shown with a dotted line, normalized to the same number of events as the background.

Distributions of the $\mathrm{NN^{SvsB}}$ output for data and the expected background after the likelihood fit in the $SR_{cQu ++}$ signal region. The post-fit background expectations are shown as filled histograms, the combined pre-fit background expectations are shown as dashed lines. The signal distribution using the Wilson coefficient values $c_{tu}^{(1)}=0.04$, $c_{Qu}^{(1)}=0.1$, $c_{Qu}^{(8)}=0.1$ is shown with a dotted line, normalized to the same number of events as the background.

More…

Measurement of the inclusive isolated-photon production cross section in pp and Pb$-$Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Agarwal, Apar ; Aglieri Rinella, Gianluca ; et al.
Eur.Phys.J.C 85 (2025) 553, 2025.
Inspire Record 2831272 DOI 10.17182/hepdata.157542

The ALICE Collaboration at the CERN LHC has measured the inclusive production cross section of isolated photons at midrapidity as a function of the photon transverse momentum ($p_{\rm T}^{\gamma}$), in Pb-Pb collisions in different centrality intervals, and in pp collisions, at centre-of-momentum energy per nucleon pair of $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV. The photon transverse momentum range is between 10-14 and 40-140 GeV/$c$, depending on the collision system and on the Pb-Pb centrality class. The result extends to lower $p_{\rm T}^{\gamma}$ than previously published results by the ATLAS and CMS experiments at the same collision energy. The covered pseudorapidity range is $|\eta^{\gamma}| <0.67$. The isolation selection is based on a charged particle isolation momentum threshold $p_{\rm T}^{\rm iso,~ch} = 1.5$ GeV/$c$ within a cone of radii $R=0.2$ and $0.4$. The nuclear modification factor is calculated and found to be consistent with unity in all centrality classes, and also consistent with the HG-PYTHIA model, which describes the event selection and geometry biases that affect the centrality determination in peripheral Pb-Pb collisions. The measurement is compared to next-to-leading order perturbative QCD calculations and to the measurements of isolated photons and Z$^0$ bosons from the CMS experiment, which are all found to be in agreement.

9 data tables

Isolated-photon differential cross section measured in pp and Pb$-$Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02~\mathrm{TeV}$ for five Pb$-$Pb centrality classes for $R=0.2$. Note that the Pb$-$Pb data in the first five columns is scaled by $\langle N_{\mathrm{coll}} \rangle$, unlike in the figure in the paper where the theory was scaled by $\langle N_{\mathrm{coll}} \rangle$. Last two columns correspond to theory NLO pQCD calculations with JETPHOX, for pp (PDF) and Pb$-$Pb (nPDF) collisions calculated for the 0$-$100% centrality class. Data statistical and systematic uncertainties are provided. The theory scale and PDF uncertainties are provided. The data normalisation uncertainties are provided in the paper.

Isolated-photon differential cross section measured in pp and Pb$-$Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02~\mathrm{TeV}$ for five Pb$-$Pb centrality classes for $R=0.4$. Note that the Pb$-$Pb data in the first five columns is scaled by $\langle N_{\mathrm{coll}} \rangle$, unlike in the figure in the paper where the theory was scaled by $\langle N_{\mathrm{coll}} \rangle$. Last two columns correspond to theory NLO pQCD calculations with JETPHOX, for pp (PDF) and Pb$-$Pb (nPDF) collisions calculated for the 0$-$100% centrality class. Data statistical and systematic uncertainties are provided. The theory scale and PDF uncertainties are provided. The data normalisation uncertainties are provided in the paper.

Ratio of isolated-photon cross section measured with $R=0.4$ over $R=0.2$ for Pb$-$Pb and pp collisions at $\sqrt{s_{\mathrm{NN}}}=5.02~\mathrm{TeV}$. Each column for each Pb$-$Pb collisions centrality class and for pp collisions. The last two columns for the NLO pQCD JETPHOX calculations for pp (PDF) and Pb$-$Pb (nPDF) collisions. Data statistical and systematic uncertainties are provided. The theory statiscal (Monte Carlo approach) and PDF uncertainties are provided.

More…