Date

Collaboration Reset

Subject_areas

An improved measurement of the left-right Z0 cross-section asymmetry

The SLD collaboration Abe, K. ; Abt, I. ; Akagi, T. ; et al.
Phys.Rev.Lett. 78 (1997) 2075-2079, 1997.
Inspire Record 426122 DOI 10.17182/hepdata.19583

We present a new measurement of the left-right cross section asymmetry (ALR) for Z boson production by e+e- collisions. The measurement was performed at a center-of-mass energy of 91.28 GeV with the SLD detector at the SLAC Linear Collider (SLC). The luminosity-weighted average polarization of the SLC electron beam was (77.23+-0.52)%. Using a sample of 93,644 Z decays, we measure the pole-value of the asymmetry, ALR0, to be 0.1512+-0.0042(stat.)+-0.0011(syst.) which is equivalent to an effective weak mixing angle of sin**2(theta_eff)=0.23100+-0.00054(stat.)+-0.00014(syst.).

2 data tables

No description provided.

The left-right asymmetry and effective weak mixing angle corrected to the pole energy value, taking into account photon exclusive and electroweak interference effects of total-state radiation.


Measurement of the charged multiplicities in b, c and light quark events from Z0 decays.

The SLD collaboration Abe, K. ; Abt, I. ; Akagi, T. ; et al.
Phys.Lett.B 386 (1996) 475-485, 1996.
Inspire Record 422172 DOI 10.17182/hepdata.28349

Average charged multiplicities have been measured separately in $b$, $c$ and light quark ($u,d,s$) events from $Z~0$ decays measured in the SLD experiment. Impact parameters of charged tracks were used to select enriched samples of $b$ and light quark events, and reconstructed charmed mesons were used to select $c$ quark events. We measured the charged multiplicities: $\bar{n}_{uds} = 20.21 \pm 0.10 (\rm{stat.})\pm 0.22(\rm{syst.})$, $\bar{n}_{c} = 21.28 \pm 0.46(\rm{stat.}) ~{+0.41}_{-0.36}(\rm{syst.})$ $\bar{n}_{b} = 23.14 \pm 0.10(\rm{stat.}) ~{+0.38}_{-0.37}(\rm{syst.})$, from which we derived the differences between the total average charged multiplicities of $c$ or $b$ quark events and light quark events: $\Delta \bar{n}_c = 1.07 \pm 0.47(\rm{stat.})~{+0.36}_{-0.30}(\rm{syst.})$ and $\Delta \bar{n}_b = 2.93 \pm 0.14(\rm{stat.})~{+0.30}_{-0.29}(\rm{syst.})$. We compared these measurements with those at lower center-of-mass energies and with perturbative QCD predictions. These combined results are in agreement with the QCD expectations and disfavor the hypothesis of flavor-independent fragmentation.

3 data tables

Average charge multiplicity in B-tagged events.

Average charge multiplicity in C-tagged events.

Average charge multiplicity in light quark (uds) events.


Factorial and Cumulant Moments in $e^{+}e^{-}\to$ Hadrons at the Z$^0$ Resonance

The SLD collaboration Abe, K. ; Abt, I. ; Ahn, C.J. ; et al.
Phys.Lett.B 371 (1996) 149-156, 1996.
Inspire Record 415576 DOI 10.17182/hepdata.41682

We present the first experimental study of the ratio of cumulant to factorial moments of the charged-particle multiplicity distribution in high-energy particle interactions, using hadronic Z$^0$ decays collected by the SLD experiment at SLAC. We find that this ratio, as a function of the moment-rank $q$, decreases sharply to a negative minimum at $q=5$, which is followed by quasi-oscillations. These features are insensitive to experimental systematic effects and are in qualitative agreement with expectations from next-to-next-to-leading-order perturbative QCD.

1 data table

CONST is the cumulant to factorial moments ratio. See text for definition.


First Measurement of the T-odd Correlation between the Z0 Spin and the Three-jet Plane Orientation in Polarized Z0 Decays to Three Jets

The SLD collaboration Abe, K. ; Abt, I. ; Ahn, C.J. ; et al.
Phys.Rev.Lett. 75 (1995) 4173-4177, 1995.
Inspire Record 400920 DOI 10.17182/hepdata.19601

We present the first measurement of the correlation between the $Z^0$ spin and the three-jet plane orientation in polarized $Z^0$ decays into three jets in the SLD experiment at SLAC utilizing a longitudinally polarized electron beam. The CP-even and T-odd triple product $\vec{S_Z}\cdot(\vec{k_1}\times \vec{k_2})$ formed from the two fastest jet momenta, $\vec{k_1}$ and $\vec{k_2}$, and the $Z^0$ polarization vector $\vec{S_Z}$, is sensitive to physics beyond the Standard Model. We measure the expectation value of this quantity to be consistent with zero and set 95\% C.L. limits of $-0.022 < \beta < 0.039$ on the correlation between the $Z^0$-spin and the three-jet plane orientation.

1 data table

Asymmetry extracted from formula: (1/SIG(Q=3JET))*D(SIG)/D(COS(OMEGA)) = 9/16*[(1-1/3*(COS(OMEGA))**2) + ASYM*Az*(1-2*Pmis(ABS(COS(OMEGA))))*COS(OMEGA)], where OMEGA is polar angle of [k1,k2] vector (jet-plane normal), Pmis is the p robability of misassignment of of jet-plane normal, Az is beam polarization. Jets were reconstructed using the 'Durham' jet algorithm with a jet-resol ution parameter Yc = 0.005.


Measurement of the polarized forward - backward asymmetry of Z0 ---> b anti-b using a lifetime tag and momentum weighted track charge

The SLD collaboration Abe, K. ; Abt, I. ; Ahn, C.J. ; et al.
SLAC-PUB-6979, 1995.
Inspire Record 398301 DOI 10.17182/hepdata.18618

None

1 data table

No description provided.


First measurement of the left-right cross-section asymmetry in Z boson production by e+ e- collisions

The SLD collaboration Abe, K. ; Abt, I. ; Acton, P.D. ; et al.
Phys.Rev.Lett. 70 (1993) 2515-2520, 1993.
Inspire Record 352667 DOI 10.17182/hepdata.19765

We present the first measurement of the left-right cross section asymmetry (ALR) for Z boson production by e+e− collisions. The measurement was performed at a center-of-mass energy of 91.55 GeV with the SLD detector at the SLAC Linear Collider which utilized a longitudinally polarized electron beam. The average beam polarization was (22.4±0.6)%. Using a sample of 10 224 Z decays, we measure ALR to be 0.100±0.044(stat)±0.004(syst), which determines the effective weak mixing angle to be sin2θWeff=0.2378 ±0.0056(stat)±0.0005(syst).

2 data tables

R and L refer to Right and Left handed beam polarization.

Effective weak mixing angle.