Measurements of the total and differential Higgs boson production cross-sections, via $WH$ and $ZH$ associated production using $H\rightarrow WW^\ast\rightarrow\ellν\ellν$ and $H\rightarrow WW^\ast\rightarrow\ellνjj$ decays, are presented. The analysis uses proton-proton events delivered by the Large Hadron Collider at a centre-of-mass energy of 13 TeV and recorded by the ATLAS detector between 2015 and 2018. The data correspond to an integrated luminosity of 140 fb$^{-1}$. The sum of the $WH$ and $ZH$ cross-sections times the $H\rightarrow WW^\ast$ branching fraction is measured to be $0.44^{+0.10}_{-0.09}$ (stat.) $^{+0.06}_{-0.05}$ (syst.) pb, in agreement with the Standard Model prediction. Higgs boson production is further characterised through measurements of the differential cross-section as a function of the transverse momentum of the vector boson and in the framework of Simplified Template Cross-Sections.
Post-fit distribution of $ANN_{Zdom}$ in the Z-dominated SR. The post-fit result is obtained from the combined 2-POI fit described in section 9.1 of the paper.
Best-fit values of the total $WH$, $ZH$, and $VH$ cross sections times the $H\rightarrow WW^{*}$ branching ratio.
Observed profile likelihood as a function of $\sigma\times\mathcal{B}_{H\rightarrow WW^{*}}$ normalised by the SM expectation for the $VH$ and $WH/ZH$ measurements from the combined 1- and 2-POI fits, respectively
The production of $D^{\pm}$ and $D_{s}^{\pm}$ charmed mesons is measured using the $D^{\pm}/D_{s}^{\pm} \to ϕ(μμ)π^{\pm}$ decay channel with 137 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider during the years 2016-2018. The charmed mesons are reconstructed in the range of transverse momentum $12 < p_\mathrm{T} < 100$ GeV and pseudorapidity $|η| < 2.5$. The differential cross-sections are measured as a function of transverse momentum and pseudorapidity, and compared with next-to-leading-order QCD predictions. The predictions are found to be consistent with the measurements in the visible kinematic region within the large theoretical uncertainties.
The measured differential cross-sections and the predictions from GM-VFNS and FONLL calculations for the $D^\pm$ meson in bins of $|\eta|$. The statistical, systematic (excluding branching ratio) and branching ratio uncertainties are shown separately for data, while the total theory uncertainties are shown for GM-VFNS and FONLL.
The measured differential cross-sections and the predictions from GM-VFNS and FONLL calculations for the $D^\pm$ meson in bins of $p_T$ for $|\eta| < 2.5$. The statistical, systematic (excluding branching ratio) and branching ratio uncertainties are shown separately for data, while the total theory uncertainties are shown for GM-VFNS and FONLL.
The measured differential cross-sections and the predictions from the GM-VFNS calculation for the $D_s^\pm$ meson in bins of $|\eta|$. The statistical, systematic (excluding branching ratio) and branching ratio uncertainties are shown separately for data, while the total theory uncertainties are shown for GM-VFNS.
$Z$ boson events at the Large Hadron Collider can be selected with high purity and are sensitive to a diverse range of QCD phenomena. As a result, these events are often used to probe the nature of the strong force, improve Monte Carlo event generators, and search for deviations from Standard Model predictions. All previous measurements of $Z$ boson production characterize the event properties using a small number of observables and present the results as differential cross sections in predetermined bins. In this analysis, a machine learning method called OmniFold is used to produce a simultaneous measurement of twenty-four $Z$+jets observables using $139$ fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV collected with the ATLAS detector. Unlike any previous fiducial differential cross-section measurement, this result is presented unbinned as a dataset of particle-level events, allowing for flexible re-use in a variety of contexts and for new observables to be constructed from the twenty-four measured observables.
Differential cross-section in bins of dimuon $p_\text{T}$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of dimuon rapidity. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading muon $p_\mathrm{T]$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Cross-sections for the production of a $Z$ boson in association with two photons are measured in proton$-$proton collisions at a centre-of-mass energy of 13 TeV. The data used correspond to an integrated luminosity of 139 fb$^{-1}$ recorded by the ATLAS experiment during Run 2 of the LHC. The measurements use the electron and muon decay channels of the $Z$ boson, and a fiducial phase-space region where the photons are not radiated from the leptons. The integrated $Z(\rightarrow\ell\ell)\gamma\gamma$ cross-section is measured with a precision of 12% and differential cross-sections are measured as a function of six kinematic variables of the $Z\gamma\gamma$ system. The data are compared with predictions from MC event generators which are accurate to up to next-to-leading order in QCD. The cross-section measurements are used to set limits on the coupling strengths of dimension-8 operators in the framework of an effective field theory.
Measured fiducial-level integrated cross-section. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).
Measured unfolded differential cross-section as a function of the leading photon transverse energy $E^{\gamma1}_{\mathrm{T}}$. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).
Measured unfolded differential cross-section as a function of the subleading photon transverse energy $E^{\gamma2}_{\mathrm{T}}$. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).
A measurement is presented of the production of Z bosons that decay into two electrons or muons in association with jets, in proton-proton collisions at a centre-of-mass energy of 13 TeV. The data were recorded by the CMS Collaboration at the LHC with an integrated luminosity of 35.9 fb$^{-1}$. The differential cross sections are measured as a function of the transverse momentum ($p_\mathrm{T}$) of the Z boson and the transverse momentum and rapidities of the five jets with largest $p_\mathrm{T}$. The jet multiplicity distribution is measured for up to eight jets. The hadronic activity in the events is estimated using the scalar sum of the $p_\mathrm{T}$ of all the jets. All measurements are unfolded to the stable particle-level and compared with predictions from various Monte Carlo event generators, as well as with expectations at leading and next-to-leading orders in perturbative quantum chromodynamics.
Measured cross section as a function of exclusive jet multiplicity, $N_{\text{jets}}$, and breakdown of the relative uncertainty.
Bin-to-bin correlation in the measured cross section as a function of exclusive jet multiplicity, $N_{\text{jets}}$.
Measured cross section as a function of the rapidity absolute value of the first jet, $|y(\text{j}_1)|$, and breakdown of the relative uncertainty.
A precision measurement of the $Z$ boson production cross-section at $\sqrt{s} = 13$ TeV in the forward region is presented, using $pp$ collision data collected by the LHCb detector, corresponding to an integrated luminosity of 5.1 fb$^{-1}$. The production cross-section is measured using $Z\rightarrow\mu^+\mu^-$ events within the fiducial region defined as pseudorapidity $2.0<\eta<4.5$ and transverse momentum $p_{T}>20$ GeV/$c$ for both muons and dimuon invariant mass $60<M_{\mu\mu}<120$ GeV/$c^2$. The integrated cross-section is determined to be $\sigma (Z \rightarrow \mu^+ \mu^-)$ = 196.4 $\pm$ 0.2 $\pm$ 1.6 $\pm$ 3.9~pb, where the first uncertainty is statistical, the second is systematic, and the third is due to the luminosity determination. The measured results are in agreement with theoretical predictions within uncertainties.
Relative uncertainty for the integrated $Z -> \mu^{+} \mu^{-}$ cross-section measurement. The total uncertainty is the quadratic sum of uncertainties from statistical, systematic and luminosity contributions.
Final state radiation correction used in the $y^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.
Final state radiation correction used in the $p_{T}^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.
Measurements of the associated production of a W boson and a charm (c) quark in proton-proton collisions at a centre-of-mass energy of 8 TeV are reported. The analysis uses a data sample corresponding to a total integrated luminosity of 19.7 fb$^{-1}$ collected by the CMS detector at the LHC. The W bosons are identified through their leptonic decays to an electron or a muon, and a neutrino. Charm quark jets are selected using distinctive signatures of charm hadron decays. The product of the cross section and branching fraction $\sigma$(pp $\to$ W + c + X) $\mathcal{B}$(W $\to$$\ell\nu$), where $\ell$ = e or $\mu$, and the cross section ratio $\sigma$(pp $\to$ W$^+$ + c + X) / $\sigma$(pp $\to$ W$^-$ + $\mathrm{\bar{c}}$ + X) are measured inclusively and differentially as functions of the pseudorapidity and of the transverse momentum of the lepton from the W boson decay. The results are compared with theoretical predictions. The impact of these measurements on the determination of the strange quark distribution is assessed.
Signal yields after background subtraction, efficiency*acceptance correction factors, and cross section measurements for the four channels (W decay to muon or electron and charm identification via muon or secondary vertex inside a jet).
Measured production cross sections $\sigma(W^+ + \overline{c})$, $\sigma(W^- + c)$ and their ratio.
Measured diferential cross sections $\sigma(W^- + c) + \sigma(W^+ + \overline{c})$ as a function of the absolute value of the pseudorapidity of the lepton from the W decay.
A measurement of inclusive four-jet production in proton-proton collisions at a center-of-mass energy of 13\TeV is presented. The transverse momenta of jets within $\lvert\eta\rvert \lt$ 4.7 reach down to 35, 30, 25, and 20 GeV for the first-, second-, third-, and fourth-leading jet, respectively. Differential cross sections are measured as functions of the jet transverse momentum, jet pseudorapidity, and several other observables that describe the angular correlations between the jets. The measured distributions show sensitivity to different aspects of the underlying event, parton shower, and matrix element calculations. In particular, the interplay between angular correlations caused by parton shower and double-parton scattering contributions is shown to be important. The double-parton scattering contribution is extracted by means of a template fit to the data, using distributions for single-parton scattering obtained from Monte Carlo event generators and a double-parton scattering distribution constructed from inclusive single-jet events in data. The effective double-parton scattering cross section is calculated and discussed in view of previous measurements and of its dependence on the models used to describe the single-parton scattering background.
Comparison of the pT spectrum for the leading jet from data to different PYTHIA8 (P8),HERWIG++ (H++),and HERWIG7 (H7) tunes.
Comparison of the pT spectrum for the sub-leading from data to different PYTHIA8 (P8),HERWIG++ (H++),and HERWIG7 (H7) tunes.
Comparison of the pT spectrum for the third-leading from data to different PYTHIA8 (P8),HERWIG++ (H++),and HERWIG7 (H7) tunes.
The production cross-sections of $J/\psi$ mesons in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=5$ TeV are measured using a data sample corresponding to an integrated luminosity of $9.13\pm0.18~\text{pb}^{-1}$, collected by the LHCb experiment. The cross-sections are measured differentially as a function of transverse momentum, $p_{\text{T}}$, and rapidity, $y$, and separately for $J/\psi$ mesons produced promptly and from beauty hadron decays (nonprompt). With the assumption of unpolarised $J/\psi$ mesons, the production cross-sections integrated over the kinematic range $0<p_{\text{T}}<20~\text{GeV}/c$ and $2.0<y<4.5$ are $8.154\pm0.010\pm0.283~\mu\text{b}$ for prompt $J/\psi$ mesons and $0.820\pm0.003\pm0.034~\mu\text{b}$ for nonprompt $J/\psi$ mesons, where the first uncertainties are statistical and the second systematic. These cross-sections are compared with those at $\sqrt{s}=8$ TeV and $13$ TeV, and are used to update the measurement of the nuclear modification factor in proton-lead collisions for $J/\psi$ mesons at a centre-of-mass energy per nucleon pair of $\sqrt{s_{\text{NN}}}=5$ TeV. The results are compared with theoretical predictions.
Double-differential production cross-sections for prompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.
Double-differential production cross-sections for nonprompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.
Single-differential production cross-sections for prompt $J/\psi$ mesons as a function of $p_\text{T}$. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, and the last are uncorrelated systematic uncertainties.
Double-parton scattering is investigated using events with a Z boson and jets. The Z boson is reconstructed using only the dimuon channel. The measurements are performed with proton-proton collision data recorded by the CMS experiment at the LHC at $\sqrt{s} =$ 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$ collected in the year 2016. Differential cross sections of Z + $\geq$ 1 jet and Z + $\geq$ 2 jets are measured with transverse momentum of the jets above 20 GeV and pseudorapidity $|\eta|$$\lt$ 2.4. Several distributions with sensitivity to double-parton scattering effects are measured as functions of the angle and the transverse momentum imbalance between the Z boson and the jets. The measured distributions are compared with predictions from several event generators with different hadronization models and different parameter settings for multiparton interactions. The measured distributions show a dependence on the hadronization and multiparton interaction simulation parameters, and are important input for future improvements of the simulations.
Differential cross sections as function of Delta Phi between Z boson and the leading jet for Z+ ≥ 1 jet events.
Differential cross sections as function of transverse momentum imbalance between Z boson and the leading jet for Z+ ≥ 1 jet events.
Differential cross sections as function of Delta Phi between Z boson and dijet for Z+ ≥ 2 jets events.