A first measurement of the top quark spin asymmetry, sensitive to the top quark polarisation, in t-channel single top quark production is presented. It is based on a sample of pp collisions at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 19.7 inverse-femtobarns. A high-purity sample of t-channel single top quark events with an isolated muon is selected. Signal and background components are estimated using a fit to data. A differential cross section measurement, corrected for detector effects, of an angular observable sensitive to the top quark polarisation is performed. The differential distribution is used to extract a top quark spin asymmetry of 0.26 +/- 0.03 (stat) +/- 0.10 (syst), which is compatible with a p-value of 4.6% with the standard model prediction of 0.44.
The normalized differential cross section as a function of unfolded $\cos\theta_{\mu}^{*}$ for top quark.
The normalized differential cross section as a function of unfolded $\cos\theta_{\mu}^{*}$ for top antiquark.
The normalized differential cross section as a function of unfolded $\cos\theta_{\mu}^{*}$ for top quark and antiquark.
A measurement of the correlations between the polar angles of leptons from the decay of pair-produced $t$ and $\bar{t}$ quarks in the helicity basis is reported, using proton-proton collision data collected by the ATLAS detector at the LHC. The dataset corresponds to an integrated luminosity of 4.6fb$^{-1}$ at a center-of-mass energy of $\sqrt{s}=7$TeV collected during 2011. Candidate events are selected in the dilepton topology with large missing transverse momentum and at least two jets. The angles $\theta_1$ and $\theta_2$ between the charged leptons and the direction of motion of the parent quarks in the $t\bar{t}$ rest frame are sensitive to the spin information, and the distribution of {\mbox{$\cos\theta_1\cdot\cos\theta_2$}} is sensitive to the spin correlation between the $t$ and $\bar{t}$ quarks. The distribution is unfolded to parton level and compared to the next-to-leading order prediction. A good agreement is observed.
The numerical summary of the unfolded $\cos\theta_1\cdot\cos\theta_2$ distribution, with statistical and systematic uncertainties.
The correlation factors for the statistical uncertainties between any two bins of the unfolded distribution.
We report a measurement of the differential cross section of $\pi^0$ pair production in single-tag two-photon collisions, $\gamma^* \gamma \to \pi^0 \pi^0$, in $e^+ e^-$ scattering. The cross section is measured for $Q^2$ up to 30 GeV$^2$, where $Q^2$ is the negative of the invariant mass squared of the tagged photon, in the kinematic range 0.5 GeV < W < 2.1 GeV and $|\cos \theta^*|$ < 1.0 for the total energy and pion scattering angle, respectively, in the $\gamma^* \gamma$ center-of-mass system. The results are based on a data sample of 759 fb$^{-1}$ collected with the Belle detector at the KEKB asymmetric-energy $e^+ e^-$ collider. The transition form factor of the $f_0(980)$ and that of the $f_2(1270)$ with the helicity-0, -1, and -2 components separately are measured for the first time and are compared with theoretical calculations.
$W$ dependence of the differential cross section ${\rm d}\sigma/{\rm d}|\cos\theta^*|$ in five $|\cos\theta^*|$ bins for $Q^2$=3.45 GeV$^2$.
$W$ dependence of the differential cross section ${\rm d}\sigma/{\rm d}|\cos\theta^*|$ in five $|\cos\theta^*|$ bins for $Q^2$=4.46 GeV$^2$.
$W$ dependence of the differential cross section ${\rm d}\sigma/{\rm d}|\cos\theta^*|$ in five $|\cos\theta^*|$ bins for $Q^2$=5.47 GeV$^2$.
The distribution and orientation of energy inside jets is predicted to be an experimental handle on colour connections between the hard--scatter quarks and gluons initiating the jets. This Letter presents a measurement of the distribution of one such variable, the jet pull angle. The pull angle is measured for jets produced in $t\bar{t}$ events with one $W$ boson decaying leptonically and the other decaying to jets using 20.3 fb$^{-1}$ of data recorded with the ATLAS detector at a centre-of-mass energy of $\sqrt{s}=8$ TeV at the LHC. The jet pull angle distribution is corrected for detector resolution and acceptance effects and is compared to various models.
Normalised fiducial ttbar differential cross-section for the jet pull angle distribution constructed using all particles.
Normalised fiducial ttbar differential cross-section for the jet pull angle distribution constructed using charged particles.
Statistical bin-bin correlation matrix.
Measurements of the five most significant angular coefficients, A[0] through A[4], for Z bosons produced in pp collisions at $\sqrt{s}$ = 8 TeV and decaying to $\mu^+ \mu^-$ are presented as a function of the transverse momentum and rapidity of Z boson. The integrated luminosity of the dataset collected with the CMS detector at the LHC corresponds to 19.7 inverse femtobarns. These measurements provide comprehensive information about Z boson production mechanisms, and are compared to QCD predictions at leading order, next-to-leading order, and next-to-next-to-leading order in perturbation theory.
The five angular coefficients A0 to A4 and A0-A2 in bins of qT for |y| < 1.
The five angular coefficients A0 to A4 and A0-A2 in bins of qT for 1 < |y| < 2.1.
This paper presents distributions of topological observables in inclusive three- and four-jet events produced in pp collisions at a centre-of-mass energy of 7 TeV with a data sample collected by the CMS experiment corresponding to a luminosity of 5.1 inverse femtobarns. The distributions are corrected for detector effects, and compared with several event generators based on two- and multi-parton matrix elements at leading order. Among the considered calculations, MADGRAPH interfaced with PYTHIA6 displays the best overall agreement with data.
CORRECTED NORMALIZED DISTRIBUTION OF THREE-JET MASS IN THE INCLUSIVE THREE-JET SAMPLE. THE PROVIDED UNCERTAINTY CORRESPONDS TO SYSTEMATIC UNCERTAINTY.
CORRECTED NORMALIZED DISTRIBUTION OF SCALED ENERGY OF THE LEADING-JET IN THE INCLUSIVE THREE-JET SAMPLE. THE PROVIDED UNCERTAINTY CORRESPONDS TO SYSTEMATIC UNCERTAINTY.
CORRECTED NORMALIZED DISTRIBUTION OF SCALED ENERGY OF THE SECOND-LEADING-JET IN THE INCLUSIVE THREE-JET SAMPLE. THE PROVIDED UNCERTAINTY CORRESPONDS TO SYSTEMATIC UNCERTAINTY.
We report a high-statistics measurement of the differential cross section of the process gamma gamma --> K^0_S K^0_S in the range 1.05 GeV <= W <= 4.00 GeV, where W is the center-of-mass energy of the colliding photons, using 972 fb^{-1} of data collected with the Belle detector at the KEKB asymmetric-energy e^+ e^- collider operated at and near the Upsilon-resonance region. The differential cross section is fitted by parameterized S-, D_0-, D_2-, G_0- and G_2-wave amplitudes. In the D_2 wave, the f_2(1270), a_2(1320) and f_2'(1525) are dominant and a resonance, the f_2(2200), is also present. The f_0(1710) and possibly the f_0(2500) are seen in the S wave. The mass, total width and product of the two-photon partial decay width and decay branching fraction to the K bar{K} state Gamma_{gamma gamma}B(K bar{K}) are extracted for the f_2'(1525), f_0(1710), f_2(2200) and f_0(2500). The destructive interference between the f_2(1270) and a_2(1320) is confirmed by measuring their relative phase. The parameters of the charmonium states chi_{c0} and chi_{c2} are updated. Possible contributions from the chi_{c0}(2P) and chi_{c2}(2P) states are discussed. A new upper limit for the branching fraction of the P- and CP-violating decay channel eta_c --> K^0_S K^0_S is reported. The detailed behavior of the cross section is updated and compared with QCD-based calculations.
The W dependence of the cross section after integrating up to |cosTheta*|<0.8 and 0.6.
The cos(Theta*) dependence of the differential cross section for the W ranges 1.10-1.11, 1.11-1.12 and 1.12-1.13.
The cos(Theta*) dependence of the differential cross section for the W ranges 1.13-1.14, 1.14-1.15 and 1.15-1.16.
The ATLAS experiment at the LHC has measured the production cross section of events with two isolated photons in the final state, in proton-proton collisions at sqrt(s) = 7 TeV. The full data set collected in 2011, corresponding to an integrated luminosity of 4.9 fb-1, is used. The amount of background, from hadronic jets and isolated electrons, is estimated with data-driven techniques and subtracted. The total cross section, for two isolated photons with transverse energies above 25 GeV and 22 GeV respectively, in the acceptance of the electromagnetic calorimeter (|eta|<1.37 and 1.52<|eta|<2.37) and with an angular separation Delta R>0.4, is 44.0 (+3.2) (-4.2) pb. The differential cross sections as a function of the di-photon invariant mass, transverse momentum, azimuthal separation, and cosine of the polar angle of the largest transverse energy photon in the Collins--Soper di-photon rest frame are also measured. The results are compared to the prediction of leading-order parton-shower and next-to-leading-order and next-to-next-to-leading-order parton-level generators.
Experimental cross-section values per bin in PB*GEV**-1 for M(2GAMMA).
Experimental cross-section values per bin in PB*GEV**-1 for PT(2GAMMA).
Experimental cross-section values per bin in PB*RAD**-1 for DELTA(PHI(2GAMMA)).
First measurements of charge-independent correlations on angular difference variables $\eta_1 - \eta_2$ (pseudorapidity) and $\phi_1 - \phi_2$ (azimuth) are presented for primary charged hadrons with transverse momentum $0.15 \leq p_t \leq 2$ GeV/$c$ and $|\eta| \leq 1.3$ from Au-Au collisions at $\sqrt{s_{NN}} = 130$ GeV. Strong charge-independent angular correlations are observed associated with jet-like structures and elliptic flow. The width of the jet-like peak on $\eta_1 - \eta_2$ increases by a factor 2.3 from peripheral to central collisions, suggesting strong coupling of semi-hard scattered partons to a longitudinally-expanding medium. New methods of jet analysis introduced here provide evidence for nonperturbative QCD medium effects in heavy ion collisions.
Two-particle CI joint autocorrelations $\widehat{N}(\widehat{r}-1)$ on $(\eta_{\Delta}, \phi_{\Delta})$ for most-central collisions.
Two-particle CI joint autocorrelations $\widehat{N}(\widehat{r}-1)$ on $(\eta_{\Delta}, \phi_{\Delta})$ for mid-central collisions.
Two-particle CI joint autocorrelations $\widehat{N}(\widehat{r}-1)$ on $(\eta_{\Delta}, \phi_{\Delta})$ for mid-peripheral collisions.
Three-jet production is studied for the first time in deep-inelastic positron-proton scattering. The measurement carried out with the H1 detector at HERA covers a large range of four-momentum transfer squared 5 < Q^2 < 5000 GeV^2 and invariant three-jet masses 25 < M_(3jet) < 140 GeV. Jets are defined by the inclusive k_T algorithm in the Breit frame. The size of the three-jet cross section and the ratio of the three-jet to the dijet cross section R_(3/2) are described over the whole phase space by the predictions of perturbative QCD in next-to-leading order. The shapes of angular jet distributions deviate significantly from a uniform population of the available phase space but are well described by the QCD calculation.
The inclusive 3-Jet cross section as a function of Q**2.
The ratio of 3 jets to 2 jets as a function of Q**2.
The inclusive 3-JET cross section as a function of Bjorken scaling variableX for the Q**2 range 5 to 100 GeV**2.