We have used the spin-precession technique to measure the Σ− magnetic moment (μΣ). A Σ− beam with a polarization of 22% was produced by a 400-GeV proton beam striking a Cu target at nominal production angles of ±3 mrad. We simultaneously recorded 21 000 Σ−→ne−ν¯ decays and 650 000 Σ−→nπ− decays at Σ− beam momenta of 253 and 308 GeV/c. We find μΣ=−1.166±0.014±0.010 nuclear magnetons, where the quoted errors are statistical and systematic, respectively.
Preliminary results are presented using the Wide Band photon beam at Fermilab to measure the cross-section of $D^{*\pm}$ and $D^{\pm}$ photoproduction on a Be target over the photon energy range from 100 GeV to 350 GeV....
Fermilab experiment 711 has investigated proton-nucleus collisions in which two high-transverse-momentum hadrons are produced forming high-mass ++, +-, and -- charged states, using an 800-GeV/c proton beam on targets of beryllium, aluminum, iron, and tungsten. Our data cover the range in dihadron mass from 6 to 15 GeV/c2. We show here that the dependence of the cross section on atomic weight A can be parametrized as Aα where α=1.043±0.011(stat)±0.025 (syst), and is independent of the charge state of the dihadron system.
Differential cross sections have been measured at Fermilab with a focusing spectrometer for π±p, K±p, and p±p elastic scattering at 50-, 70-, 100-, 140-, and 175-GeV/c incident momentum over the |t| range 0.03 to 0.8 GeV2. The results are smooth in t and are parametrized by quadratic exponential fits.
Inelastic scattering of 490 GeV μ + from deuterium and xenon nuclei has been studied for x Bj > s .001. The ratio of the xenon/deuterium cross section per nucleon is observed to vary with x Bj , with a depletion in the kinematic range 0.001 < x Bj < 0.025 which exhibits no significant Q 2 dependence. An electromagnetic calorimeter was used to verify the radiative corrections.
We present the first measurements at a hadron collider of differential cross sections for Z+jet+X production in delta phi(Z, jet), |delta y(Z, jet)| and |y_boost(Z, jet)|. Vector boson production in association with jets is an excellent probe of QCD and constitutes the main background to many small cross section processes, such as associated Higgs production. These measurements are crucial tests of the predictions of perturbative QCD and current event generators, which have varied success in describing the data. Using these measurements as inputs in tuning event generators will increase the experimental sensitivity to rare signals.
Longitudinal and transverse momentum spectra of final state hadrons produced in deep-inelastic muon-deuterium scattering at incident muon energy of 490 GeV have been measured up to a hadronic center of mass energy of 30 GeV. The longitudinal distributions agree well with data from earlier muon-nucleon scattering experiments; these distributions tend to increase in steepness as the center of mass energy increases. Comparisons with e + e − data at comparable center of mass energies indicate slight differences. The transverse momentum distributions show an increase in mean $p_T^2$ with an increase in the center of mass energy.
Results on the production of charged hadrons in muon-deuteron and muon-xenon interactions are presented. The data were taken with the E665 spectrometer, which was exposed to the 490 GeV muon beam of the Tevatron at Fermilab. The use of a streamer chamber as vertex detector provides nearly 4π acceptance for charged particles. The μD data are compared with the μXe data in terms of multiplicity distributions, average multiplicities, forward-backward multiplicity correlations, rapidity and transverse momentum distributions and of two-particle rapidity correlations of charged hadrons. The data cover a range of invariant hadronic massesW from 8 to 30 GeV.
The production ofK0, Λ and\(\bar \Lambda \) particles is studied in the E665 muon-nucleon experiment at Fermilab. The average multiplicities and squared transverse momenta are measured as a function ofxF andW2. Most features of the data can be well described by the Lund model. Within this model, the data on the K0/π± ratios and on the averageK0 multiplicity in the forward region favor a strangeness suppression factors/u in the fragmentation process near 0.20. Clear evidence for QCD effects is seen in the average squared transverse momentum ofK0 and Λ particles.
Using a sample of 2.35×105 polarized Ω−→ΛK− decays, we have measured the Ω− magnetic moment to be μΩ−=(−2.024±0.056)μN.