J/psi production has been measured in proton-proton collisions at sqrt(s)= 200 GeV over a wide rapidity and transverse momentum range by the PHENIX experiment at RHIC. Distributions of the rapidity and transverse momentum, along with measurements of the mean transverse momentum and total production cross section are presented and compared to available theoretical calculations. The total J/psi cross section is 3.99 +/- 0.61(stat) +/- 0.58(sys) +/- 0.40(abs) micro barns. The mean transverse momentum is 1.80 +/- 0.23(stat) +/- 0.16(sys) GeV/c.
Measured J/PSI distribution in PT for the e+e- channel. The value of B, the branching fraction to either electrons or muons is the average value from PDG : 5.9%.The rapidity range is -0.35<y<0.35. Incertainties are 1-sigma statistical errors on the (signal - background) net yield. There is a 10% overall absolute cross section normalization error in addition to the error given.
Measured J/PSI distribution in PT for the mu+mu- channel. The value of B, the branching fraction to either electrons or muons, is the average value from PDG: 5.9%.The rapidity range is -2.2<y<-1.2. Incertainties are 1-sigma statistical errors on the (signal - background) net yield.There is a 10% overall absolute cross section normalization error in addition to the error given.
J/PSI distribution in rapidity. The data at rapidity = 0 is from the electron arm, the data from the muon arm, corresponding to forward rapidity is divided in two bins.The value of B,the branching fraction to either electrons or muons, is 5.9%, the average value from PDG.Incertainties are 1-sigma statistical errors on the (signal - background) net yield.There is a 10% overall absolute cross section normalization error in addition to the error given.
The centrality dependence of transverse momentum distributions and yields for pi^+/-, K^+/-, p and p^bar in Au+Au collisions at sqrt(s_NN) = 200 GeV at mid-rapidity are measured by the PHENIX experiment at RHIC. We observe a clear particle mass dependence of the shapes of transverse momentum spectra in central collisions below ~ 2 GeV/c in p_T. Both mean transverse momenta and particle yields per participant pair increase from peripheral to mid-central and saturate at the most central collisions for all particle species. We also measure particle ratios of pi^-/pi^+, K^-/K^+, p^bar/p, K/pi, p/pi and p^bar/pi as a function of p_T and collision centrality. The ratios of equal mass particle yields are independent of p_T and centrality within the experimental uncertainties. In central collisions at intermediate transverse momenta ~ 1.5-4.5 GeV/c, proton and anti-proton yields constitute a significant fraction of the charged hadron production and show a scaling behavior different from that of pions.
Centrality dependence of the $p_{T}$ distribution for $\pi^{+}$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Errors are statistical only.
Centrality dependence of the $p_{T}$ distribution for $\pi^{-}$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Errors are statistical only.
Centrality dependence of the $p_{T}$ distribution for $K^{+}$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Errors are statistical only.
Pion-kaon correlation functions are constructed from central Au+Au data taken at $\sqrt{s_{NN}} = 130$ GeV. The results suggest that pions and kaons are not emitted at the same average space-time point. Space-momentum correlations, i.e. transverse flow, lead to a space-time emission asymmetry of pions and kaons that is consistent with the data. This result provides new independent evidence that the system created at RHIC undergoes a collective transverse expansion.
Pion-kaon correlation functions and ratios of correlation functions. Errors are statistical only.
Pion-kaon correlation functions and ratios of correlation functions. Errors are statistical only.
Pion-kaon correlation functions and ratios of correlation functions. Errors are statistical only.
We present the results of charged particle fluctuations measurements in Au + Au collisions at $\sqrt{s_{NN}}=130$ GeV using the STAR detector. Dynamical fluctuations measurements are presented for inclusive charged particle multiplicities as well as for identified charged pions, kaons, and protons. The net charge dynamical fluctuations are found to be large and negative providing clear evidence that positive and negative charged particle production is correlated within the pseudorapidity range investigated. Correlations are smaller than expected based on model-dependent predictions for a resonance gas or a quark gluon gas which undergoes fast hadronization and freeze-out. Qualitative agreement is found with comparable scaled p+p measurements and a HIJING model calculation based on independent particle collisions, although a small deviation from the 1/N scaling dependence expected from this model is observed.
Dynamical fluctuations, $ν_{+−,dyn}$, measured in $|\eta| ≤ 0.5$ as a function of the collision centrality estimated with the total (uncorrected) multiplicity, M, in $|\eta| < 0.75$. Only statistical errors are listed. Systematic errors estimated at $5\%$.
$\langle N\rangle ν_{+−,dyn}$ measured in $|\eta| ≤ 0.5$ vs M (opened circles) compared to the charge conservation limit (dotted line), resonance gas expectation based on ref.[5](solid line); and HIJING calculation (solid squares). Only statistical errors are listed. Systematic errors estimated at $10\%$.
Fluctuations $ν_{+−,dyn}$ for the $6\%$ most central collisions as a function of the range of integrated pseudorapidities. The expected limit due to charge conservation is shown as a dotted line.
We report results on rho(770)^0 -> pi+pi- production at midrapidity in p+p and peripheral Au+Au collisions at sqrt(s_NN) = 200 GeV. This is the first direct measurement of rho(770)^0 -> pi+pi- in heavy-ion collisions. The measured rho^0 peak in the invariant mass distribution is shifted by ~40 MeV/c^2 in minimum bias p+p interactions and ~70 MeV/c^2 in peripheral Au+Au collisions. The rho^0 mass shift is dependent on transverse momentum and multiplicity. The modification of the rho^0 meson mass, width, and shape due to phase space and dynamical effects are discussed.
The raw $\pi^{+} \pi^{-}$ invariant mass distributions after subtraction of the like-sign reference distribution for minimum bias p+p (top) and peripheral Au+Au (bottom) interactions.
The raw $\pi^{+} \pi^{-}$ invariant mass (solid line) and the like-sign reference distributions (open circles) for peripheral Au+Au collisions.
The $\rho^{0}$ mass as a function of $p_{T}$ for minimum bias $p$+$p$ (filled circles), high multiplicity $p$+$p$ (open triangles), and peripheral Au+Au (filled squares) collisions. The error bars indicate the systematic uncertainty. Statistical errors are negligible. The $\rho^{0}$ mass was obtained by fitting the data to the BW×PS functional form described in the text. The dashed lines represent the average of the $\rho^{0}$ mass measured in $e^{+} e^{−}$. The shaded areas indicate the ρ0 mass measured in $p$+$p$ collisions. The open triangles have been shifted downward on the abscissa by $50$ MeV/$c$ for clarity.
Transverse momentum spectra and yields of hadrons are measured by the PHENIX collaboration in Au + Au collisions at sqrt(s_NN) = 130 GeV at the Relativistic Heavy Ion Collider (RHIC). The time-of-flight resolution allows identification of pions to transverse momenta of 2 GeV/c and protons and antiprotons to 4 GeV/c. The yield of pions rises approximately linearly with the number of nucleons participating in the collision, while the number of kaons, protons, and antiprotons increases more rapidly. The shape of the momentum distribution changes between peripheral and central collisions. Simultaneous analysis of all the p_T spectra indicates radial collective expansion, consistent with predictions of hydrodynamic models. Hydrodynamic analysis of the spectra shows that the expansion velocity increases with collision centrality and collision energy. This expansion boosts the particle momenta, causing the yield from soft processes to exceed that for hard to large transverse momentum, perhaps as large as 3 GeV/c.
The sources of systematic uncertainties in $\langle p_T \rangle$ and $dN$/$dy$.
The $dN$/$dy$ at midrapidity for hadrons produced at midrapidity in each centrality class.
The resulting inverse slopes in MeV after fitting an $m_T$ exponential to the spectra in the range $m_T$-$m_0$ < 1 GeV in each event centrality classes. The pion resonance region is excluded in the fits. The equivalent $p_T$ fit range for each particle is shown accordingly.
Inclusive momentum spectra and multiplicity distributions of charged particles measured with BESII detector at center of mass energies of 2.2,2.6,3.0,3.2,4.6 and 4.8 GeV are presented. Values of the second binomial moment, $R_2$, obtained from the multiplicity distributions are reported. These results are compared with both experimental data from high energy $e^+e^-$, $ep$ and $p\bar{p}$ experiments and QCD calculations.
Measured xi =-ln(2p/sqrt(s)) spectra for centre of mass energy 2.2 GeV.. Errors are statistical and systematic added in quadrature.
Measured xi =-ln(2p/sqrt(s)) spectra for centre of mass energy 2.6 GeV.. Errors are statistical and systematic added in quadrature.
Measured xi =-ln(2p/sqrt(s)) spectra for centre of mass energy 3.0 GeV.. Errors are statistical and systematic added in quadrature.
Data from the first physics run at the Relativistic Heavy-Ion Collider at Brookhaven National Laboratory, Au+Au collisions at $\sqrt{s_{NN}}=130$ GeV, have been analyzed by the STAR Collaboration using three-pion correlations with charged pions to study whether pions are emitted independently at freezeout. We have made a high-statistics measurement of the three-pion correlation function and calculated the normalized three-particle correlator to obtain a quantitative measurement of the degree of chaoticity of the pion source. It is found that the degree of chaoticity seems to increase with increasing particle multiplicity.
Values for the three-pion correlation function using high multiplicity negative pions. Errors are statistical+systematic.
Three-pion correlator values (r3/2) for positive and negative pions in central and mid-central events. Errors are statistical+systematic.
Three-pion correlator intercept values (r3(0)/2) for positive and negative pions in central and mid-central events compared with other experiments. Errors are statistical+systematic.
We report on the rapidity and centrality dependence of proton and anti-proton transverse mass distributions from Au+Au collisions at sqrt(sNN) = 130GeV as measured by the STAR experiment at RHIC. Our results are from the rapidity and transverse momentum range of |y|<0.5 and 0.35
$p$ differential yield. Systematic uncertainties are $\pm$10%.
$\bar{p}$ differential yield. Systematic uncertainties are $\pm$10%.
Rapidity distribution of $p$. Combined statitiscal uncertainty and systematic uncertainty from PID contramination. Systematic uncertainties from the track reconstruction efficiency are $\pm$25%.
We report measurements of single-particle inclusive spectra and two-particle azimuthal distributions of charged hadrons at high transverse momentum (high $p_T$) in minimum bias and central d+Au collisions at $\sqrt{s_{NN}}$=200 GeV. The inclusive yield is enhanced in d+Au collisions relative to binary-scaled p+p collisions, while the two-particle azimuthal distributions are very similar to those observed in p+p collisions. These results demonstrate that the strong suppression of the inclusive yield and back-to-back correlations at high $p_T$ previously observed in central Au+Au collisions are due to final-state interactions with the dense medium generated in such collisions.
Uncorrected charged particle multiplicity distributions measured in −3.8 < $\eta$ < −2.8 (Au-direction) for d+Au collisions. Points are for minimum bias (triangles) and peripheral (circles, ZDC-d single neutron) collisions. Both are normalized to the total number of d+Au collisions. Histograms are Glauber model calculations.
Inclusive $p_{T}$ distributions for minimum bias and central d+Au collisions, and non-singly diffractive p+p collisions. Hash marks at the top indicate bin boundaries for $p_{T}$ > 3.8 GeV/c.
$R_{AB}(p_{T})$ from Eq. 1 for minimum bias and central d+Au collisions, and central Au+Au collisions. The minimum bias d+Au data are displaced 100 MeV/c to the right for clarity. The error bars are the quadrature sum of the statistical and point-to-point systematic uncertainties. The bands show the normalization uncertainties, which are highly correlated point-to-point and between the two d+Au distributions.