Results are presented from analyses of jet data produced in pbarp collisions at sqrt{s} = 630 and 1800 GeV collected with the DO detector during the 1994-95 Fermilab Tevatron Collider run. We discuss details of detector calibration, and jet selection criteria in measurements of various jet production cross sections at sqrt{s} = 630 and 1800 GeV. The inclusive jet cross sections, the dijet mass spectrum, the dijet angular distributions, and the ratio of inclusive jet cross sections at sqrt{s} = 630 and 1800 GeV are compared to next-to-leading-order QCD predictions. The order alpha_s^3 calculations are in good agreement with the data. We also use the data at sqrt{s} = 1800 GeV to rule out models of quark compositeness with a contact interaction scale less than 2.2 TeV at the 95% confidence level.
The inclusive single jet cross section as a function of ET for ABS(ETARAP) < 0.5 at c.m. energy 1800 GeV.
The inclusive single jet cross section as a function of ET for ABS(ETARAP) 0.1 to 0.7 at c.m. energy 1800 GeV.
The inclusive single jet cross section as a function of ET and XT for ABS(ETARAP) < 0.5 at c.m. energy 630 GeV.
We present results for the charged-particle multiplicity distribution at mid-rapidity in Au - Au collisions at sqrt(s_NN)=130 GeV measured with the PHENIX detector at RHIC. For the 5% most central collisions we find $dN_{ch}/d\eta_{|\eta=0} = 622 \pm 1 (stat) \pm 41 (syst)$. The results, analyzed as a function of centrality, show a steady rise of the particle density per participating nucleon with centrality.
130 GeV is sqrt(S) per nucleon-nucleon collision. N(C=N_NUCLEONS) and N(C=N_COLLISONS) are the number of participating nucleons and binary collisions. The statistical errors are negligible and only systematic errors are quoted. COL(NAME=CENTRALITY) is centrality.
We have measured the ratio of prompt production rates of the charmonium states χc1 and χc2 in 110pb−1 of pp¯ collisions at s=1.8TeV. The photon from their decay into J/ψγ is reconstructed through conversion into e+e− pairs. The energy resolution this technique provides makes the resolution of the two states possible. We find the ratio of production cross sections σχc2σχc1=0.96±0.27(stat)±0.11(syst) for events with pT(J/ψ)>4.0GeV/c, |η(J/ψ)|<0.6, and pT(γ)>1.0GeV/c.
No description provided.
We present results from the measurement of the inclusive jet cross section for jet transverse energies from 40 to 465 GeV in the pseudo-rapidity range $0.1<|\eta|<0.7$. The results are based on 87 $pb^{-1}$ of data collected by the CDF collaboration at the Fermilab Tevatron Collider. The data are consistent with previously published results. The data are also consistent with QCD predictions given the flexibility allowed from current knowledge of the proton parton distributions. We develop a new procedure for ranking the agreement of the parton distributions with data and find that the data are best described by QCD predictions using the parton distribution functions which have a large gluon contribution at high $E_T$ (CTEQ4HJ).
The inclusive jet cross section. Statistical errors shown. The systematic errors are given in the html link above.
We update the measurement of the top production cross section using the CDF detector at the Fermilab Tevatron. This measurement uses $t\bar{t}$ decays to the final states $e+\nu$+jets and $\mu+\nu$+jets. We search for $b$ quarks from $t$ decays via secondary-vertex identification or the identification of semileptonic decays of the $b$ and cascade $c$ quarks. The background to the $t\bar{t}$ production is determined primarily through a Monte Carlo simulation. However, we calibrate the simulation and evaluate its uncertainty using several independent data samples. For a top mass of 175 $GeV/c^2$, we measure $\sigma_{t\bar{t}}=5.1 \pm 1.5$ pb and $\sigma_{t\bar{t}}=9.2 \pm 4.3$ pb using the secondary vertex and the lepton tagging algorithms, respectively. Finally, we combine these results with those from other $t\bar{t}$ decay channels and obtain $\sigma_{t\bar{t}} = 6.5^{+1.7}_{-1.4}$ pb.
Cross sections from the SVX (secondary vertex), SLT (soft lepton tag), dilepton and all hadronic analyses. See text of article for details. Errors contain both statistics and systematics.
We report on a measurement of the differential cross sections of inclusive$K^{\pm}_{890}$production in$\sigma^-, pi^-$and ne
The production cross sections for K*+- per nucleus and per nucleon for the SIGMA- beam.
The production cross sections for K*+- per nucleus and per nucleon for the PI- beam.
The production cross sections for K*+- per nucleus and per nucleon for the NEUTRON- beam.
None
Total inclusive production cross sections for the SIGMA- beam on the Coppertarget.
Total inclusive production cross sections for the SIGMA- beam on the Carbontarget.
Total inclusive production cross sections per nucleon for the SIGMA- beam, and the exponent in the cross section parametrization of the form A**POWER.
We have measured the charge asymmetry in like-sign dilepton yields from B^0 B^0-bar meson decays using the CLEO detector at the Cornell Electron Storage Ring. We find a_ll = [N(l+l+) - N(l-l-)]/[N(l+l+) + N[l-l-)] = +0.013 +/- 0.050 +/- 0.005 . We combine this result with a previous, independent measurement and obtain Re(epsilon_B)/(1+|epsilon_B|^2) = +0.0035 +/- 0.0103 +/- 0.0015 (uncertainties are statistical and systematic, respectively) for the CP impurity parameter, epsilon_B.
CONST(NAME=EPSILON) is CP impurity parameter.
Using 13.6/fb of continuum two-jet e+e- -> ccbar events collected with the CLEO detector, we have searched for baryon number correlations at the primary quark level. We have measured the likelihood for a /\c+ charmed baryon to be produced in the hemisphere opposite a /\c- relative to the likelihood for a /\c+ charmed baryon to be produced opposite an anticharmed meson Dbar; in all cases, the reconstructed hadrons must have momentum greater than 2.3 GeV/c. We find that, given a /\c- (reconstructed in five different decay modes), a /\c+ is observed in the opposite hemisphere (0.72+/-0.11)% of the time (not corrected for efficiency). By contrast, given a Dbar in one hemisphere, a /\c+ is observed in the opposite hemisphere only (0.21+/-0.02)% of the time. Normalized to the total number of either /\c- or Dbar ``tags'', it is therefore 3.52+/-0.45+/-0.42 times more likely to find a /\c+ opposite a /\c- than a Dbar meson. This enhancement is not observed in the JETSET 7.3 e+e- -> ccbar Monte Carlo simulation.
Statistal errors only.
Statistal errors only.
Statistal errors only.
We report values of $R = \sigma(e^+e^-\to {hadrons})/\sigma(e^+e^-\to\mu^+\mu^-)$ for 85 center-of-mass energies between 2 and 5 GeV measured with the upgraded Beijing Spectrometer at the Beijing Electron-Positron Collider.
Measured values of R.