Date

Rapidity and centrality dependence of proton and anti-proton production from Au-197 + Au-197 collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adams, J. ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.C 70 (2004) 041901, 2004.
Inspire Record 621642 DOI 10.17182/hepdata.102320

We report on the rapidity and centrality dependence of proton and anti-proton transverse mass distributions from Au+Au collisions at sqrt(sNN) = 130GeV as measured by the STAR experiment at RHIC. Our results are from the rapidity and transverse momentum range of |y|<0.5 and 0.35

11 data tables

$p$ differential yield. Systematic uncertainties are $\pm$10%.

$\bar{p}$ differential yield. Systematic uncertainties are $\pm$10%.

Rapidity distribution of $p$. Combined statitiscal uncertainty and systematic uncertainty from PID contramination. Systematic uncertainties from the track reconstruction efficiency are $\pm$25%.

More…

Absence of suppression in particle production at large transverse momentum in s(NN)**(1/2) = 200-GeV d + Au collisions.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 91 (2003) 072303, 2003.
Inspire Record 621391 DOI 10.17182/hepdata.143668

Transverse momentum spectra of charged hadrons with p_T < 8 GeV/c and neutral pions with p_T < 10 GeV/c have been measured at mid-rapidity by the PHENIX experiment at RHIC in d+Au collisions at sqrt(s_NN) = 200 GeV. The measured yields are compared to those in p+p collisions at the same sqrt(s_NN) scaled up by the number of underlying nucleon-nucleon collisions in d+Au. The yield ratio does not show the suppression observed in central Au+Au collisions at RHIC. Instead, there is a small enhancement in the yield of high momentum particles.

10 data tables

Midrapidity $p_T$ spectra for charged hadrons.

Midrapidity $p_T$ spectra for $\pi^0$.

Nuclear modification factor $R_{dA}$ for $\pi^0$ in the PbGl and PbSc calorimeters in minimum bias $d$+$Au$.

More…

J/psi production in Au Au collisions at s(NN)**(1/2) = 200-GeV at the Relativistic Heavy Ion Collider.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 69 (2004) 014901, 2004.
Inspire Record 619646 DOI 10.17182/hepdata.57253

First results on charm quarkonia production in heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) are presented. The yield of J/Psi's measured in the PHENIX experiment via electron-positron decay pairs at mid-rapidity for Au-Au reactions at sqrt(s_NN) = 200 GeV are analyzed as a function of collision centrality. For this analysis we have studied 49.3 million minimum bias Au-Au reactions. We present the J/Psi invariant yield dN/dy for peripheral and mid-central reactions. For the most central collisions where we observe no signal above background, we quote 90% confidence level upper limits. We compare these results with our J/Psi measurement from proton-proton reactions at the same energy. We find that our measurements are not consistent with models that predict strong enhancement relative to binary collision scaling.

2 data tables

Measured invariant differential yield at mid-rapidity of J/PSI, as a function of centratility, times branching ratio Be+e-, for three bins of centrality : 0-20%, 20-40% and 40-90% of Au-Au cross-section. The 90% confidence level upper limit (CLUL) for the yield is also given.

Measured differential yield of J/PSI per binary collisions,at mid rapidity, as a function of the centrality, times branching ratio Be+e-.The 90% confidence level upper limit (CLUL) for J/PSI differential yield is also given. The values of the number of participants for each centrality bins are calculated for general information.


Transverse momentum and collision energy dependence of high p(T) hadron suppression in Au + Au collisions at ultrarelativistic energies.

The STAR collaboration Adams, J. ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.Lett. 91 (2003) 172302, 2003.
Inspire Record 619063 DOI 10.17182/hepdata.93908

We report high statistics measurements of inclusive charged hadron production in Au+Au and p+p collisions at \sqrtsNN=200 GeV. A large, approximately constant hadron suppression is observed in central Au+Au collisions for $5\lt\pT\lt12$ GeV/c. The collision energy dependence of the yields and the centrality and \pT dependence of the suppression provide stringent constraints on theoretical models of suppression. Models incorporating initial-state gluon saturation or partonic energy loss in dense matter are largely consistent with observations. We observe no evidence of \pT-dependent suppression, which may be expected from models incorporating jet attentuation in cold nuclear matter or scattering of fragmentation hadrons.

4 data tables

Inclusive invariant pT distributions of (h+ + h−)/2 for centrality-selected Au+Au and p+p NSD interactions. Hash marks at the top indicate bin boundaries for pT>4 GeV/c.The invariant cross section for p+p is indicated on the right vertical axis.

R200/130(pT ) vs. pT for (h+ + h−)/2 for four different centrality bins. The overall normalization uncertainty is +6−14% for the 40-60% bin and is negligible for the other panels. Calculations are described in the text.

RAA(pT) (Eq. 1) for (h+ + h−)/2 in |η|<0.5, for centrality-selected Au+Au spectra relative to the measured p+p spectrum. The p+p spectrum is common to all panels. Calculations are described in the text.

More…

Scaling properties of proton and anti-proton production in s(NN)**(1/2) = 200-GeV Au + Au collisions.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 91 (2003) 172301, 2003.
Inspire Record 619987 DOI 10.17182/hepdata.143073

We report on the yield of protons and anti-protons, as a function of centrality and transverse momentum, in Au+Au collisions at sqrt(s_NN) = 200 GeV measured at mid-rapidity by the PHENIX experiment at RHIC. In central collisions at intermediate transverse momenta (1.5 < p_T < 4.5 GeV/c) a significant fraction of all produced particles are protons and anti-protons. They show a centrality-scaling behavior different from that of pions. The p-bar/pion and p/pion ratios are enhanced compared to peripheral Au+Au, p+p, and electron+positron collisions. This enhancement is limited to p_T < 5 GeV/c as deduced from the ratio of charged hadrons to pi^0 measured in the range 1.5 < p_T < 9 GeV/c.

8 data tables

$p$/$\pi^+$ and $p$/$\pi^-$ ratios for central (0-10%) mid-central (20-30%) and peripheral (60-92%) Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

$p$/$\pi^-$ and $p$/$\pi^0$ ratios for central (0-10%) mid-central (20-30%) and peripheral (60-92%) Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

$p$ and $\bar{p}$ invariant yields scaled by $N_{coll}$. Error bars are statistical. Systematic errors on $N_{coll}$ range from ~ 10% for central to ~ 28% for 60-92% centrality. Multiplicity dependent normalization errors are ~3%.

More…

Elliptic flow of identified hadrons in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 91 (2003) 182301, 2003.
Inspire Record 619061 DOI 10.17182/hepdata.141613

The anisotropy parameter v_2, the second harmonic of the azimuthal particles distribution, has been measured with the PHENIX detector in Au+Au collisions at sqrt(s_NN) = 200 GeV for identified and inclusive charged particles at central rapidities (|eta| < 0.35) with respect to the reaction plane defined at high rapidities (|eta| = 3-4). The v_2 for all particles reaches a maximum at mid-centrality, and increases with p_T up to 2 GeV/c and then saturates or decreases slightly. Our results depart from hydrodynamically predicted behavior above 2 GeV/c. A quark coalescence model is also investigated.

33 data tables

Correlation of reaction planes between two beam counters for the second moment is shown as a function of centrality.

The value of $v_2$ for charged particles is shown as a function of centrality (middle) and as a function of $p_T$ (right).

The value of $v_2$ for charged particles is shown as a function of transverse momentum, $p_T$.

More…

Mid-rapidity neutral pion production in proton proton collisions at s**(1/2) = 200-GeV

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 91 (2003) 241803, 2003.
Inspire Record 617784 DOI 10.17182/hepdata.41956

The invariant differential cross section for inclusive neutral pion production in p+p collisions at sqrt(s_NN) = 200 GeV has been measured at mid-rapidity |eta| < 0.35 over the range 1 < p_T <~ 14 GeV/c by the PHENIX experiment at RHIC. Predictions of next-to-leading order perturbative QCD calculations are consistent with these measurements. The precision of our result is sufficient to differentiate between prevailing gluon-to-pion fragmentation functions.

1 data table

The invariant differential cross section as a function of PT. The mean PT here is defined as the PT for which the cross section equals its average over thebin.


Suppressed pi0 production at large transverse momentum in central Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 91 (2003) 072301, 2003.
Inspire Record 617814 DOI 10.17182/hepdata.143254

Transverse momentum spectra of neutral pions in the range 1 < p_T < 10 GeV/c have been measured at mid-rapidity by the PHENIX experiment at RHIC in Au+Au collisions at sqrt(s_NN) = 200 GeV. The pi^0 multiplicity in central reactions is significantly below the yields measured at the same sqrt(s_NN) in peripheral Au+Au and p+p reactions scaled by the number of nucleon-nucleon collisions. For the most central bin, the suppression factor is ~2.5 at p_T = 2 GeV/c and increases to ~4-5 at p_T ~= 4 GeV/c. At larger p_T, the suppression remains constant within errors. The deficit is already apparent in semi-peripheral reactions and increases smoothly with centrality.

26 data tables

Invariant $\pi^0$ yields at midrapidity as a function of $p_T$ for minimum bias and nine centralities in $Au\ +\ Au$ at $\sqrt{s_{NN}} = 200\ GeV$ [0%–10% (80%–92%) is most central (peripheral)]. The labels "uncorr." and "corr." include systematic errors that are uncorrelated and correlated point-to-point, respectively.

Invariant $\pi^0$ yields at midrapidity as a function of $p_T$ for minimum bias and nine centralities in $Au\ +\ Au$ at $\sqrt{s_{NN}} = 200\ GeV$ [0%–10% (80%–92%) is most central (peripheral)]. The labels "uncorr." and "corr." include systematic errors that are uncorrelated and correlated point-to-point, respectively.

Invariant $\pi^0$ yields at midrapidity as a function of $p_T$ for minimum bias and nine centralities in $Au\ +\ Au$ at $\sqrt{s_{NN}} = 200\ GeV$ [0%–10% (80%–92%) is most central (peripheral)]. The labels "uncorr." and "corr." include systematic errors that are uncorrelated and correlated point-to-point, respectively.

More…

V0, anti-Xi+ and Omega- inclusive production cross-sections measured in hyperon experiment WA89 at CERN

The WA89 collaboration Adamovich, M.I. ; Aleksandrov, Yu.A. ; Baranov, S.P. ; et al.
Eur.Phys.J.C 26 (2003) 357-370, 2003.
Inspire Record 614087 DOI 10.17182/hepdata.43217

We report on a measurement of the inclusive cross sections of $\Lambda$ , $\overline\Lambda$ , K 0

28 data tables

Total inclusive hyperon production cross sections for the SIGMA- beam on the Copper target.

Total inclusive hyperon production cross sections for the SIGMA- beam on the Carbon target.

Total inclusive hyperon production cross sections per nucleon for the SIGMA- beam, and the exponent in the cross section parametrization of the form A**POWER.

More…

Narrowing of the balance function with centrality in Au + Au collisions s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adams, J. ; Adler, C. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 90 (2003) 172301, 2003.
Inspire Record 612248 DOI 10.17182/hepdata.98620

The balance function is a new observable based on the principle that charge is locally conserved when particles are pair produced. Balance functions have been measured for charged particle pairs and identified charged pion pairs in Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV at the Relativistic Heavy Ion Collider using STAR. Balance functions for peripheral collisions have widths consistent with model predictions based on a superposition of nucleon-nucleon scattering. Widths in central collisions are smaller, consistent with trends predicted by models incorporating late hadronization.

6 data tables

The balance function versus ∆η for charged particle pairs from a) central and peripheral Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV and mixed events from central and peripheral Au+Au collisions, and b) HIJING events filtered with GEANT [16] and shuffled pseudorapidity events from central and peripheral Au+Au collisions. To guide the eye, Gaussian fits excluding the lowest bin in ∆η are shown. The error bars shown are statistical. The balance function for HIJING events is independent of centrality.

The balance function versus ∆η for charged particle pairs from a) central and peripheral Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV and mixed events from central and peripheral Au+Au collisions, and b) HIJING events filtered with GEANT [16] and shuffled pseudorapidity events from central and peripheral Au+Au collisions. To guide the eye, Gaussian fits excluding the lowest bin in ∆η are shown. The error bars shown are statistical. The balance function for HIJING events is independent of centrality.

The width of the balance function for charged particles, $⟨\Delta \eta⟩$, as a function of normalized impact parameter $(b/b_{max})$. Error bars shown are statistical. The width of the balance function from HIJING events is shown as a band whose height reflects the statistical uncertainty. Also shown are the widths from the shuffled pseudorapidity events.

More…