Version 2
Global $\Lambda$ hyperon polarization in nuclear collisions: evidence for the most vortical fluid

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Nature 548 (2017) 62-65, 2017.
Inspire Record 1510474 DOI 10.17182/hepdata.77494

The extreme temperatures and energy densities generated by ultra-relativistic collisions between heavy nuclei produce a state of matter with surprising fluid properties. Non-central collisions have angular momentum on the order of 1000$\hbar$, and the resulting fluid may have a strong vortical structure that must be understood to properly describe the fluid. It is also of particular interest because the restoration of fundamental symmetries of quantum chromodynamics is expected to produce novel physical effects in the presence of strong vorticity. However, no experimental indications of fluid vorticity in heavy ion collisions have so far been found. Here we present the first measurement of an alignment between the angular momentum of a non-central collision and the spin of emitted particles, revealing that the fluid produced in heavy ion collisions is by far the most vortical system ever observed. We find that $\Lambda$ and $\overline{\Lambda}$ hyperons show a positive polarization of the order of a few percent, consistent with some hydrodynamic predictions. A previous measurement that reported a null result at higher collision energies is seen to be consistent with the trend of our new observations, though with larger statistical uncertainties. These data provide the first experimental access to the vortical structure of the "perfect fluid" created in a heavy ion collision. They should prove valuable in the development of hydrodynamic models that quantitatively connect observations to the theory of the Strong Force. Our results extend the recent discovery of hydrodynamic spin alignment to the subatomic realm.

2 data tables

Lambda and AntiLambda polarization as a function of collision energy. A 0.8% error on the alpha value used in the paper is corrected in this table. Systematic error bars include those associated with particle identification (negligible), uncertainty in the value of the hyperon decay parameter (2%) and reaction plane resolution (2%) and detector efficiency corrections (4%). The dominant systematic error comes from statistical fluctuations of the estimated combinatoric background under the (anti-)$\Lambda$ mass peak.

Lambda and AntiLambda polarization as a function of collision energy calculated using the new $\alpha_\Lambda=0.732$ updated on PDG2020. Systematic error bars include those associated with particle identification (negligible), uncertainty in the value of the hyperon decay parameter (2%) and reaction plane resolution (2%) and detector efficiency corrections (4%). The dominant systematic error comes from statistical fluctuations of the estimated combinatoric background under the (anti-)$\Lambda$ mass peak.


Inclusive double-helicity asymmetries in neutral pion and eta meson production in $\vec{p}+\vec{p}$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 90 (2014) 012007, 2014.
Inspire Record 1282448 DOI 10.17182/hepdata.64716

Results are presented from data recorded in 2009 by the PHENIX experiment at the Relativistic Heavy Ion Collider for the double-longitudinal spin asymmetry, $A_{LL}$, for $\pi^0$ and $\eta$ production in $\sqrt{s} = 200$ GeV polarized $p$$+$$p$ collisions. Comparison of the $\pi^0$ results with different theory expectations based on fits of other published data showed a preference for small positive values of gluon polarization, $\Delta G$, in the proton in the probed Bjorken $x$ range. The effect of adding the new 2009 \pz data to a recent global analysis of polarized scattering data is also shown, resulting in a best fit value $\Delta G^{[0.05,0.2]}_{\mbox{DSSV}} = 0.06^{+0.11}_{-0.15}$ in the range $0.05<x<0.2$, with the uncertainty at $\Delta \chi^2 = 9$ when considering only statistical experimental uncertainties. Shifting the PHENIX data points by their systematic uncertainty leads to a variation of the best-fit value of $\Delta G^{[0.05,0.2]}_{\mbox{DSSV}}$ between $0.02$ and $0.12$, demonstrating the need for full treatment of the experimental systematic uncertainties in future global analyses.

9 data tables

PI0 ASYM(LL) measurements from 2005.

PI0 ASYM(LL) measurements from 2006.

PI0 ASYM(LL) measurements from 2009.

More…

Exclusive electroproduction of J/psi mesons at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Krakauer, D. ; et al.
Nucl.Phys.B 695 (2004) 3-37, 2004.
Inspire Record 647777 DOI 10.17182/hepdata.46277

The exclusive electroproduction of J/psi mesons, ep->epJ/psi, has been studied with the ZEUS detector at HERA for virtualities of the exchanged photon in the ranges 0.15<Q^2<0.8 GeV^2 and 2<Q^2<100 GeV^2 using integrated luminosities of 69 pb^-1 and 83 pb^-1, respectively.The photon-proton centre-of-mass energy was in the range 30<W<220 GeV and the squared four-momentum transfer at the proton vertex |t|<1.The cross sections and decay angular distributions are presented as functions of Q^2, W and t. The effective parameters of the Pomeron trajectory are in agreement with those found in J/psi photoproduction. The spin-density matrix elements, calculated from the decay angular distributions, are consistent with the hypothesis of s-channel helicity conservation. The ratio of the longitudinal to transverse cross sections, sigma_L/sigma_T, grows with Q^2, whilst no dependence on W or t is observed. The results are in agreement with perturbative QCD calculations and exhibit a strong sensitivity to the gluon distribution in the proton.

20 data tables

Cross sections for exclusive J/PSI production as a function of W in the Q**2 region 0.15 to 0.18 GeV**2.

Cross sections for exclusive J/PSI production as a function of W in the Q**2 region 2 to 5 GeV**2.

Cross sections for exclusive J/PSI production as a function of W in the Q**2 region 5 to 10 GeV**2.

More…

Measurement of proton dissociative diffractive photoproduction of vector mesons at large momentum transfer at HERA.

The ZEUS collaboration Chekanov, S. ; Krakauer, D. ; Magill, S. ; et al.
Eur.Phys.J.C 26 (2003) 389-409, 2003.
Inspire Record 587202 DOI 10.17182/hepdata.46584

Diffractive photoproduction of vector mesons, gamma p --> V Y, where Y is a proton-dissociative system, has been measured in ep interactions with the ZEUS detector at HERA using an integrated luminosity of 25 pb^-1. The differential cross section, ds/dt, is presented for -t<12 GeV^2, where t is the square of the four-momentum transferred to the vector meson. The data span the range in photon-proton centre-of-mass energy, W, from 80 GeV to 120 GeV. The t distributions are well fit by a power law, ds/dt ~ (-t)^{-n}. The slope of the Pomeron trajectory, measured from the W dependence of the rho^0 and phi cross sections in bins of t, is consistent with zero. The ratios ds_(gamma p --> phi Y)/dt to ds_(gamma p --> rho^0 Y)/dt and ds_(gamma p --> J/psi Y)/dt to ds_(gamma p --> rho^0 Y)/dt increase with increasing -t. Decay-angle analyses for rho^0, phi and J/psi mesons have been carried out. For the rho^0 and phi mesons, contributions from single and double helicity flip are observed. The results are compared to expectations of theoretical models.

8 data tables

Differential cross section for RHO0 production. The second DSYS error is due to the modelling of the proton-dissociation process.

Differential cross section for PHI production. The second DSYS error is due to the modelling of the proton-dissociation process.

Differential cross section for J/PSI production. The second DSYS error is due to the modelling of the proton-dissociation process.

More…

Exclusive photoproduction of J/psi mesons at HERA.

The ZEUS collaboration Chekanov, S. ; Krakauer, D. ; Magill, S. ; et al.
Eur.Phys.J.C 24 (2002) 345-360, 2002.
Inspire Record 582237 DOI 10.17182/hepdata.46713

The exclusive photoproduction of J/psi mesons, gamma p->J/psi p, has been studied in ep collisions with the ZEUS detector at HERA, in the kinematic range 20<W<290 GeV, where W is the photon-proton centre-of-mass energy. The J/psi mesons were reconstructed in the muon and the electron decay channels using integrated luminosities of 38 pb^-1 and 55 pb^-1, respectively. The helicity structure of J/psi production shows that the hypothesis of s-channel helicity conservation is satisfied at the two standard-deviation level. The total cross section and the differential cross-section dsigma/dt, where t is the squared four-momentum transfer at the proton vertex, are presented as a function of W, for |t|<1.8 GeV^2. The t distribution exhibits an exponential shape with a slope parameter increasing logarithmically with W with a value b=4.15 \pm 0.05 (stat.)^{+0.30}_{-0.18} (syst.) GeV^-2 at W=90 GeV. The effective parameters of the Pomeron trajectory are alphapom(0) = 1.200 \pm 0.009(stat.)^{+0.004}_{-0.010}(syst.) and alphappom= 0.115 \pm 0.018(stat.)^{+0.008}_{-0.015}(syst.) GeV^-2.

12 data tables

The total exclusive J/PSI photoproduction cross section, the differential cross section extrapolated to t=0 and the slope parameter of the exponential t dependence as afunction of W, the photon-proton c.m. energy, for data from J/PSI muon decay.

The total exclusive J/PSI photoproduction cross section as a function of W,the photon-proton c.m. energy, for data from J/PSI electron decays.

The differential cross section extrapolated to t=0 and the slope parameter of the exponential t dependence for exclusive J/PSI photoproduction as a function of W, the photon-proton c.m. energy for data from J/PSI electron decays.

More…